Refine
Keywords
- ceramides (2)
- liver (2)
- sphingosine 1-phosphate (2)
- 3-hydroxyanthranilic acid (1)
- C6 ceramide (1)
- Crohn’s disease (1)
- HCC (1)
- IDO1 (1)
- IL-33 (1)
- S1P lyase (1)
Institute
- S1P lyase siRNA dampens malignancy of DLD‐1 colorectal cancer cells (2020)
- Sphingosine‐1‐phosphate lyase 1 (S1P lyase or SGPL1) is an essential sphingosine‐1‐phosphate‐degrading enzyme. Its manipulation favors onset and progression of colorectal cancer and others in vivo. Thus, SGPL1 is an important modulator of cancer initiation. However, in established cancer, the impact of retrospective SGPL1 modulation is elusive. Herein, we analyzed how SGPL1 siRNA affects malignancy of the human colorectal cancer cells DLD‐1 and found that in parallel to the reduction of SGPL1 expression levels, migration, invasion, and differentiation status changed. Diminished SGPL1 expression was accompanied with reduced cell migration and cell invasion in scratch assays and transwell assays, whereas metabolic activity and proliferation was not altered. Decreased migration was attended by increased cell–cell‐adhesion through upregulation of E‐cadherin and formation of cadherin‐actin complexes. Spreading cell islets showed lower vimentin abundance in border cells. Furthermore, SGPL1 siRNA treatment induced expression of epithelial cell differentiation markers, such as intestinal alkaline phosphatase and cytokeratin 20. Hence, interference with SGPL1 expression augmented a partial redifferentiation of colorectal cancer cells toward normal colon epithelial cells. Our investigation showed that SGPL1 siRNA influenced tumorigenic activity of established colorectal cancer cells. We therefore suggest SGPL1 as a target for lowering malignant potential of already existing cancer.
- Serum sphingosine‐1‐phosphate is decreased in patients with acute‐on‐chronic liver failure and predicts early mortality (2020)
- Sphingosine‐1‐phosphate (S1P) regulates pathophysiological processes, including liver regeneration, vascular tone control, and immune response. In patients with liver cirrhosis, acute deterioration of liver function is associated with high mortality rates. The present study investigated whether serum S1P concentrations are associated with disease severity in patients with chronic liver disease from compensated cirrhosis (CC), acute decompensation (AD), or acute‐on‐chronic liver failure (ACLF). From August 2013 to October 2017, patients who were admitted to the University Hospital Frankfurt with CC, AD, or ACLF were enrolled in our cirrhosis cohort study. Tandem mass spectrometry was performed on serum samples of 127 patients to assess S1P concentration. Our study comprised 19 patients with CC, 55 with AD, and 51 with ACLF, aged 29 to 76 years. We observed a significant decrease of S1P according to advanced liver injury from CC and AD up to ACLF (P < 0.001). S1P levels further decreased with progression to ACLF grade 3 (P < 0.05), and S1P highly inversely correlated with the Model for End‐Stage Liver Disease score (r = −0.508; P < 0.001). In multivariate analysis, S1P remained an independent predictor of 7‐day mortality with high diagnostic accuracy (area under the curve, 0.874; P < 0.001). Conclusion: In patients with chronic liver disease, serum S1P levels dramatically decreased with advanced stages of liver disease and were predictive of early mortality. Because S1P is a potent regulator of endothelial integrity and immune response, low S1P levels may significantly influence progressive multiorgan failure. Our data justify further elucidation of the diagnostic and therapeutic role of S1P in ACLF.
- Mouse liver compensates loss of Sgpl1 by secretion of sphingolipids into blood and bile (2021)
- Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5–2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.
- C6 ceramide (d18:1/6:0) as a novel treatment of cutaneous T cell lymphoma (2021)
- Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of T cell lymphomas that primarily affect the skin. The most frequent forms of CTCL are mycosis fungoides and Sézary syndrome. Both are characterized by frequent recurrence, developing chronic conditions and high mortality with a lack of a curative treatment. In this study, we evaluated the effect of short-chain, cell-permeable C6 Ceramide (C6Cer) on CTCL cell lines and keratinocytes. C6Cer significantly reduced cell viability of CTCL cell lines and induced cell death via apoptosis and necrosis. In contrast, primary human keratinocytes and HaCaT keratinocytes were less affected by C6Cer. Both keratinocyte cell lines showed higher expressions of ceramide catabolizing enzymes and HaCaT keratinocytes were able to metabolize C6Cer faster and more efficiently than CTCL cell lines, which might explain the observed protective effects. Along with other existing skin-directed therapies, C6Cer could be a novel well-tolerated drug for the topical treatment of CTCL.
- Enhanced CXCR4 expression of human CD8Low T lymphocytes is driven by S1P4 (2021)
- Although the human immune response to cancer is naturally potent, it can be severely disrupted as a result of an immunosuppressive tumor microenvironment. Infiltrating regulatory T lymphocytes contribute to this immunosuppression by inhibiting proliferation of cytotoxic CD8+ T lymphocytes, which are key to an effective anti-cancer immune response. Other important contributory factors are thought to include metabolic stress caused by the local nutrient deprivation common to many solid tumors. Interleukin-33 (IL-33), an alarmin released in reaction to cell damage, and sphingosine-1-phosphate (S1P) are known to control cell positioning and differentiation of T lymphocytes. In an in vitro model of nutrient deprivation, we investigated the influence of IL-33 and S1P receptor 4 (S1P4) on the differentiation and migration of human CD8+ T lymphocytes. Serum starvation of CD8+ T lymphocytes induced a subset of CD8Low and IL-33 receptor-positive (ST2L+) cells characterized by enhanced expression of the regulatory T cell markers CD38 and CD39. Both S1P1 and S1P4 were transcriptionally regulated after stimulation with IL-33. Moreover, expression of the chemokine receptor CXCR4 was increased in CD8+ T lymphocytes treated with the selective S1P4 receptor agonist CYM50308. We conclude that nutrient deprivation promotes CD8Low T lymphocytes, contributing to an immunosuppressive microenvironment and a poor anti-cancer immune response by limiting cytotoxic effector functions. Our results suggest that S1P4 signaling modulation may be a promising target for anti-CXCR4 cancer immunotherapy.
- Sorafenib treatment and modulation of the sphingolipid pathway affect proliferation and viability of hepatocellular carcinoma In vitro (2020)
- Hepatocellular carcinoma (HCC) shows a remarkable heterogeneity and is recognized as a chemoresistant tumor with dismal prognosis. In previous studies, we observed significant alterations in the serum sphingolipids of patients with HCC. This study aimed to investigate the in vitro effects of sorafenib, which is the most widely used systemic HCC medication, on the sphingolipid pathway as well as the effects of inhibiting the sphingolipid pathway in HCC. Huh7.5 and HepG2 cells were stimulated with sorafenib, and inhibitors of the sphingolipid pathway and cell proliferation, viability, and concentrations of bioactive metabolites were assessed. We observed a significant downregulation of cell proliferation and viability and a simultaneous upregulation of dihydroceramides upon sorafenib stimulation. Interestingly, fumonisin B1 (FB1) and the general sphingosine kinase inhibitor SKI II were able to inhibit cell proliferation more prominently in HepG2 and Huh7.5 cells, whereas there were no consistent effects on the formation of dihydroceramides, thus implying an involvement of distinct metabolic pathways. In conclusion, our study demonstrates a significant downregulation of HCC proliferation upon sorafenib, FB1, and SKI II treatment, whereas it seems they exert antiproliferative effects independently from sphingolipids. Certainly, further data would be required to elucidate the potential of FB1 and SKI II as putative novel therapeutic targets in HCC.
- Inflammation-induced mucosal KYNU expression identifies human ileal Crohn’s disease (2020)
- The widely varying therapeutic response of patients with inflammatory bowel disease (IBD) continues to raise questions regarding the unclarified heterogeneity of pathological mechanisms promoting disease progression. While biomarkers for the differentiation of Crohn’s disease (CD) versus ulcerative colitis (UC) have been suggested, specific markers for a CD subclassification in ileal CD versus colonic CD are still rare. Since an altered signature of the tryptophan metabolism is associated with chronic inflammatory disease, we sought to characterize potential biomarkers by focusing on the downstream enzymes and metabolites of kynurenine metabolism. Using immunohistochemical stainings, we analyzed and compared the mucosal tryptophan immune metabolism in bioptic samples from patients with active inflammation due to UC or CD versus healthy controls. Localization-specific quantification of immune cell infiltration, tryptophan-metabolizing enzyme expression and mucosal tryptophan downstream metabolite levels was performed. We found generally increased immune cell infiltrates in the tissue of all patients with IBD. However, in patients with CD, significant differences were found between regulatory T cell and neutrophil granulocyte infiltration in the ileum compared with the colon. Furthermore, we observed decreased kynurenine levels as well as strong kynureninase (KYNU) expression specifically in patients with ileal CD. Correspondingly, significantly elevated levels of the kynurenine metabolite 3-hydroxyanthranilic acid were detected in the ileal CD samples. Highlighting the heterogeneity of the different phenotypes of CD, we identified KYNU as a potential mucosal biomarker allowing the localization-specific differentiation of ileal CD versus colonic CD.
- A sphingosine 1-phosphate gradient is linked to the cerebral recruitment of T helper and regulatory T helper cells during acute ischemic stroke (2020)
- Emerging evidence suggests a complex relationship between sphingosine 1-phosphate (S1P) signaling and stroke. Here, we show the kinetics of S1P in the acute phase of ischemic stroke and highlight accompanying changes in immune cells and S1P receptors (S1PR). Using a C57BL/6 mouse model of middle cerebral artery occlusion (MCAO), we assessed S1P concentrations in the brain, plasma, and spleen. We found a steep S1P gradient from the spleen towards the brain. Results obtained by qPCR suggested that cells expressing the S1PR type 1 (S1P1+) were the predominant population deserting the spleen. Here, we report the cerebral recruitment of T helper (TH) and regulatory T (TREG) cells to the ipsilateral hemisphere, which was associated with differential regulation of cerebral S1PR expression patterns in the brain after MCAO. This study provides insight that the S1P-S1PR axis facilitates splenic T cell egress and is linked to the cerebral recruitment of S1PR+ TH and TREG cells. Further insights by which means the S1P-S1PR-axis orchestrates neuronal positioning may offer new therapeutic perspectives after ischemic stroke.
- S1P d20:1, an endogenous modulator of S1P d18:1/S1P2-dependent signaling (2020)
- Sphingosine 1-phosphate (S1P) signaling influences numerous cell biological mechanisms such as differentiation, proliferation, survival, migration, and angiogenesis. Intriguingly, our current knowledge is based solely on the role of S1P with an 18-carbon long-chain base length, S1P d18:1. Depending on the composition of the first and rate-limiting enzyme of the sphingolipid de novo metabolism, the serine palmitoyltransferase, other chain lengths have been described in vivo. While cells are also able to produce S1P d20:1, its abundance and function remains elusive so far. Our experiments are highlighting the role of S1P d20:1 in the mouse central nervous system (CNS) and human glioblastoma. We show here that S1P d20:1 and its precursors are detectable in both healthy mouse CNS-tissue and human glioblastoma. On the functional level, we focused our work on one particular, well-characterized pathway, the induction of cyclooxygenase (COX)-2 expression via the S1P receptor 2 (S1P2). Intriguingly, S1P d20:1 only fairly induces COX-2 expression and can block the S1P d18:1-induced COX-2 expression mediated via S1P2 activation in the human glioblastoma cell line LN229. This data indicates that S1P d20:1 might act as an endogenous modulator of S1P signaling via a partial agonism at the S1P2 receptor. While our findings might stimulate further research on the relevance of long-chain base lengths in sphingolipid signaling, the metabolism of S1P d20:1 has to be considered as an integral part of S1P signaling pathways in vivo.