Refine
Keywords
Institute
- Antibiotika-Resistenz: Die Tricks der Bakterien : Pumpsysteme werfen die Arzneistoffe aus der Zelle (2009)
- Immer häufiger sind Bakterien resistent gegen ein bestimmtes Antibiotikum, oft auch gleich gegen mehrere. Eine Infektion, die von solchen multiresistenten Bakterien verursacht wird, kann nicht mehr mit Antibiotika bekämpft werden. Im schlimmsten Fall führt sie bei immungeschwächten Patienten zum Tod. Um zielgerichtet neue und wirkungsvolle Medikamente entwickeln zu können, ist es wichtig zu wissen, wie die Bakterienzelle sich gegen die Zerstörung durch Antibiotika wehrt. Ein inzwischen genau entschlüsselter Mechanismus ist die Efflux-Pumpe, die für die Zelle schädliche Substanzen wieder hinausbefördert.
- Cytochrome c oxidase biogenesis and metallochaperone interactions : steps in the assembly pathway of a bacterial complex (2017)
- Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes.
- A new critical conformational determinant of multidrug efflux by an MFS transporter (2018)
- Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.
- Editorial : bad bugs in the XXIst century: resistance mediated by multi-drug efflux pumps in gram-negative bacteria (2016)
- The discovery of antibiotics represented a key milestone in the history of medicine. However, with the rise of these life-saving drugs came the awareness that bacteria deploy defense mechanisms to resist these antibiotics, and they are good at it. Today, we appear at a crossroads between discovery of new potent drugs and omni-resistant superbugs. Moreover, the misuse of antibiotics in different industries has increased the rate of resistance development by providing permanent selective pressure and, subsequently, enrichment of multidrug resistant pathogens. As a result, antimicrobial resistance has now become an urgent threat to public health worldwide (http:// www.who.int/drugresistance/documents/surveillancereport/en/). The development of multidrug resistance (MDR) in an increasing number of pathogens, including Pseudomonas, Acinetobacter, Klebsiella, Salmonella, Burkholderia, and other Gram-negative bacteria is a serious issue. Membrane efflux pump complexes of the Resistance-Nodulation-Division (RND) superfamily play a key role in the development of MDR in these bacteria. These pumps, together with other transporters, contribute to intrinsic and acquired resistance of bacteria toward most, if not all, of the compounds available in our antimicrobial arsenal. Given the enormous drug polyspecificity of MDR efflux pumps, studies on their mechanism of action are extremely challenging, and this has negatively impacted both on the development of new antibiotics that are able to evade these efflux pumps and on the design of pump inhibitors. The collection of articles in this eBook, published as a Research Topic in Frontiers in Microbiology, section of Antimicrobials, Resistance, and Chemotherapy, aims to update the reader about the latest advances on the structure and function of RND efflux transporters, their roles in the overall multidrug resistance phenotype of Gram-negative pathogens, and on the strategies to inhibit their activities. ...
- AcrB: a mean, keen, drug efflux machine (2019)
- Gram‐negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance–nodulation–cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB–TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single‐site substitutions and highlight regions that are more sensitive to perturbation.