### Refine

#### Keywords

- nuclear reactions (4)
- freeze out (2)
- nuclear hydrodynamics (2)
- particle spectra (2)
- 20Ne + 238U (1)
- Ar + Pb (800 MeV/nucleon) relativistic heavy-ion reactions (1)
- Ar+Ca (1)
- Ausfrieren (1)
- Bjorken Modell (1)
- Bjorken model (1)

#### Institute

- Three-component fluid dynamics for the description of energetic heavy-ion reactions (1982)
- The nucleons taking part in heavy ion reaction are considered as a three-component fluid. The first and second components correspond to the nucleons of the target and the projectile, while the thermalized nucleons produced in the course of the collision belong to the third component. Making use of the Boltzmann equation, hydrodynamical equations are derived. An equation of state for anisotropic nuclear matter obtained from a field theoretical model in mean field approximation is applied in a one dimensional version of the three-component fluid model. The speed of thermalization is analyzed and compared to the results of cascade and kinetic models. NUCLEAR REACTIONS Relativistic heavy-ion reactions, hydrodynamic description.

- Supercooling of rapidly expanding quark-gluon plasma (1998)
- We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter Z. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3 6%, then it is reheated, and the hadronization is completed within 6 10 fm/c, i.e. 5 10 times faster than it was estimated earlier, in a strongly nonequilibrium way. PACS: 12.38.Mh; 12.39.Ba; 25.75.-q; 64.60.Qb

- Quark number scaling in fluid dynamics and hadronization via quarkyonic matter (2011)
- NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP), to final non-interacting hadrons. In this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down. Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified model, we reproduce the constituent quark number scaling.

- Quantitative analysis of the relation between entropy and nucleosynthesis in central Ca + Ca and Nb + Nb collisions (1987)
- The final states of central Ca + Ca and Nb + Nb collisions at 400 and 1050 MeV/nucleon and at 400 and 650 MeV/nucleon, respectively, are studied with two independently developed statistical models, namely the classical microcanonical model and the quantum-statistical grand canonical model. It is shown that these models are in agreement with each other for these systems. Furthermore, it is demonstrated that there is essentially a one-to-one relationship between the observed relative abundances of the light fragments p, d, t, 3He, and α and the entropy per nucleon, for breakup temperatures greater than 30 MeV. Entropy values of 3.5–4 are deduced from high-multiplicity selected fragment yield data.

- Non-ideal particle distributions from kinetic freeze out models (1998)
- In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity.

- Macroscopic nucleon-nucleon correlations caused by the bounce-off process in energetic collisions of heavy nuclei (1981)
- Two-particle correlation data are presented for the reaction Ar (800 MeV/ nucleon) + Pb. The experimental results are analyzed in the nuclear fluid dynamical and in a linear cascade model. We demonstrate that the collective hydrodynamical correlations dominate the measured two-particle correlation function for the heavy system studied. We discuss the transition from the early stages of the reaction which are governed by few nucleon correlations, to the later stages with their macroscopic flow which can only be reached using heavy colliding systems. The sensitivity of the correlation data on the underlying compressional dissipative processes is analyzed.

- Large p(t) enhancement from freeze out (1999)
- Freeze out of particles across three dimensional space-time hypersurface is discussed in a simple kinetic model. The final momentum distribution of emitted particles, for freeze out surfaces with space-like normal, shows a non-exponential transverse momentum spectrum. The slope parameter of the pt distribution increases with increasing pt, in agreement with recently measured SPS pion and h spectra.

- Kinetic freeze out models (1999)
- Freeze out of particles across a space-time hypersurface is discussed in kinetic models. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with spacelike normals. The resulting non-equilibrium distribution does not resemble, the previously proposed, cut Jüttner distribution, and shows non-exponential pt-spectra similar to the ones observed in experiments. PACS: 24.10.Nz, 25.75.-q

- Jets of nuclear matter from high energy heavy ion collisions (1981)
- The fluid dynamical model is used to study the reactions 20Ne+238U and 40Ar+40Ca at Elab=390 MeV/nucleon. The calculated double differential cross sections d2σ/dΩdE exhibit sidewards maxima in agreement with recent experimental data. The azimuthal dependence of the triple differential distributions, to be obtained from an event-by-event analysis of 4π exclusive experiments, can yield deeper insight into the collision process: Jets of nuclear matter are predicted with a strongly impact-parameter-dependent thrust angle θjet(b). NUCLEAR REACTIONS Ar+Ca, Ne+U, Elab=393 MeV/nucleon, fluid dynamics with thermal breakup, double differential cross sections, azimuthal dependence of triple differential cross sections, event-by-event thrust analysis of 4π exclusive experiments.

- Importance of nuclear viscosity and thermal conductivity and the analysis of the bounce-off effect in high energy heavy ion collisions (1981)
- We present an analysis of high energy heavy ion collisions at intermediate impact parameters, using a two-dimensional fluid-dynamical model including shear and bulk viscosity, heat conduction, a realistic treatment of the nuclear binding, and an analysis of the final thermal emission of free nucleons. We find large collective momentum transfer to projectile and target residues (the highly inelastic bounce-off effect) and explosion of the hot compressed shock zones formed during the impact. As the calculated azimuthal dependence of energy spectra and angular distributions of emitted nucleons depends strongly on the coefficients of viscosity and thermal conductivity, future exclusive measurements may allow for an experimental determination of these transport coefficients. The importance of 4π measurements with full azimuthal information is pointed out.