### Refine

#### Keywords

- Quark Gluon Plasma (5)
- Kollisionen schwerer Ionen (3)
- QGP (3)
- hadronic (2)
- Bjorken Modell (1)
- Bjorken model (1)
- Cluster distribution (1)
- Energie (1)
- Equation of state (1)
- Freiheitsgrad (1)

- Microscopic models for ultrarelativistic heavy ion collisions (1998)
- In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.

- Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions (1999)
- We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions at RHIC in a transport approach which combines hydrodynamics for the early, dense, deconfined stage of the reaction with a microscopic non-equilibrium model for the later hadronic stage at which the hydrodynamic equilibrium assumptions are not valid. With this ansatz we are able to self-consistently calculate the freeze-out of the system and determine space-time hypersurfaces for individual hadron species. The space-time domains of the freeze-out for several hadron species are found to be actually four-dimensional, and di er drastically for the individual hadrons species. Freeze-out radii distributions are similar in width for most hadron species, even though the is found to be emitted rather close to the phase boundary and shows the smallest freeze- out radii and times among all baryon species. The total lifetime of the system does not change by more than 10% when going from SPS to RHIC energies.

- Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach (1999)
- We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 3 depending on the hadron species.

- Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out (1998)
- We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E >= 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm 3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm 3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.

- Equation of state, spectra and composition of hot and dense infinite hadronic matter in a microscopic transport model (1998)
- Equilibrium properties of infinite relativistic hadron matter are investigated using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model. The simulations are performed in a box with periodic boundary conditions. Equilibration times depend critically on energy and baryon densities. Energy spectra of various hadronic species are shown to be isotropic and consistent with a single temperature in equilibrium. The variation of energy density versus temperature shows a Hagedorn-like behavior with a limiting temperature of 130 +/- 10 MeV. Comparison of abundances of different particle species to ideal hadron gas model predictions show good agreement only if detailed balance is implemented for all channels. At low energy densities, high mass resonances are not relevant; however, their importance raises with increasing energy density. The relevance of these different conceptual frameworks for any interpretation of experimental data is questioned.

- Global observables and secondary interactions in central Au+Au reactions at sqrt[s]=200A GeV (2000)
- The ultrarelativistic quantum molecular dynamics model (UrQMD) is used to study global observables in central reactions of Au+Au at sqrt[s]=200A GeV at the Relativistic Heavy Ion Collider (RHIC). Strong stopping governed by massive particle production is predicted if secondary interactions are taken into account. The underlying string dynamics and the early hadronic decoupling implies only small transverse expansion rates. However, rescattering with mesons is found to act as a source of pressure leading to additional flow of baryons and kaons, while cooling down pions.

- Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model (1999)
- Hadron-hadron collisions at high energies are investigated in the Ultra- relativistic-Quantum-Molecular-Dynamics approach. This microscopic trans- port model describes the phenomenology of hadronic interactions at low and intermediate energies ( s < 5 GeV) in terms of interactions between known hadrons and their resonances. At higher energies, s > 5 GeV, the excitation of color strings and their subsequent fragmentation into hadrons dominates the multiple production of particles in the UrQMD model. The model shows a fair overall agreement with a large body of experimental h-h data over a wide range of h-h center-of-mass energies. Hadronic reaction data with higher precision would be useful to support the use of the UrQMD model for relativistic heavy ion collisions.

- Local thermal and chemical equilibration and the equation of state in relativistic heavy ion collisions (1998)
- Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.

- Local thermodynamical equilibrium and the equation of state of hot, dense matter created in Au+Au collisions at AGS (1998)
- Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.

- Equilibrium and nonequilibrium effects in nucleus nucleus collisions (1999)
- Abstract: Local thermal and chemical equilibration is studied for central AqA collisions at 10.7 160 AGeV in the Ultrarelativis- . tic Quantum Molecular Dynamics model UrQMD . The UrQMD model exhibits strong deviations from local equilibrium at the high density hadron string phase formed during the early stage of the collision. Equilibration of the hadron resonance matter is established in the central cell of volume Vs125 fm3 at later stages, tG10 fmrc, of the resulting quasi-isentropic expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. PACS: 25.75.-q; 24.10.Lx; 24.10.Pa; 64.30.qt