### Refine

#### Year of publication

- 1998 (8) (remove)

#### Keywords

- Quark Gluon Plasma (3)
- QGP (2)
- Bjorken Modell (1)
- Bjorken model (1)
- Cluster distribution (1)
- Energie (1)
- Hadron (1)
- Homogeneous nucleation (1)
- Kollisionen schwerer Ionen (1)
- Materie (1)

- Equation of state, spectra and composition of hot and dense infinite hadronic matter in a microscopic transport model (1998)
- Equilibrium properties of infinite relativistic hadron matter are investigated using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model. The simulations are performed in a box with periodic boundary conditions. Equilibration times depend critically on energy and baryon densities. Energy spectra of various hadronic species are shown to be isotropic and consistent with a single temperature in equilibrium. The variation of energy density versus temperature shows a Hagedorn-like behavior with a limiting temperature of 130 +/- 10 MeV. Comparison of abundances of different particle species to ideal hadron gas model predictions show good agreement only if detailed balance is implemented for all channels. At low energy densities, high mass resonances are not relevant; however, their importance raises with increasing energy density. The relevance of these different conceptual frameworks for any interpretation of experimental data is questioned.

- Microscopic models for ultrarelativistic heavy ion collisions (1998)
- In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.

- Excitation function of energy density and partonic degrees of freedom in relativistic heavy ion collisions (1998)
- We estimate the energy density epsilon pile-up at mid-rapidity in central Pb+Pb collisions from 2 200 GeV/nucleon. epsilon is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for Elab 30 GeV/nucleon. In Pb+Pb collisions at 160 GeV/nucleon the energy density reaches up to 4 GeV/fm3, 95% of which are contained in partonic degrees of freedom.

- Homogeneous nucleation of quark gluon plasma, finite size effects and longlived metastable objects (1998)
- The general formalism of homogeneous nucleation theory is applied to study the hadronization pattern of the ultra-relativistic quark-gluon plasma (QGP) undergoing a first order phase transition. A coalescence model is proposed to describe the evolution dynamics of hadronic clusters produced in the nucle- ation process. The size distribution of the nucleated clusters is important for the description of the plasma conversion. The model is most sensitive to the initial conditions of the QGP thermalization, time evolution of the energy den- sity, and the interfacial energy of the plasma hadronic matter interface. The rapidly expanding QGP is first supercooled by about T = T Tc = 4 6%. Then it reheats again up to the critical temperature Tc. Finally it breaks up into hadronic clusters and small droplets of plasma. This fast dynamics occurs within the first 5 10 fm/c. The finite size e ects and fluctuations near the critical temperature are studied. It is shown that a drop of longitudinally expanding QGP of the transverse radius below 4.5 fm can display a long-lived metastability. However, both in the rapid and in the delayed hadronization scenario, the bulk pion yield is emitted by sources as large as 3 4.5 fm. This may be detected experimentally both by a HBT interferometry signal and by the analysis of the rapidity distributions of particles in narrow pT -intervals at small |pT | on an event-by-event basis. PACS numbers: 12.38.Mh, 24.10.Pa, 25.75.-q, 64.60.Qb

- Local thermal and chemical equilibration and the equation of state in relativistic heavy ion collisions (1998)
- Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.

- Local thermodynamical equilibrium and the equation of state of hot, dense matter created in Au+Au collisions at AGS (1998)
- Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.

- Supercooling of rapidly expanding quark-gluon plasma (1998)
- We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter Z. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3 6%, then it is reheated, and the hadronization is completed within 6 10 fm/c, i.e. 5 10 times faster than it was estimated earlier, in a strongly nonequilibrium way. PACS: 12.38.Mh; 12.39.Ba; 25.75.-q; 64.60.Qb

- Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out (1998)
- We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E >= 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm 3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm 3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.