Refine
Year of publication
Document Type
- Preprint (28) (remove)
Keywords
- heavy ion collisions (6)
- Kollisionen schwerer Ionen (4)
- Kollisionen schwerer Ionen (3)
- MEMOs (3)
- QGP (3)
- heavy ion collisions (3)
- Meson (2)
- Molekulare Dynamik (2)
- Quark-Gluon-Plasma (2)
- Quark-Gluon-Plasma (2)
Institute
- Physik (28) (remove)
- Microscopic models for ultrarelativistic heavy ion collisions (1998)
- In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.
- Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions (1997)
- Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.
- Nucleus-nucleus collisions at highest energies (1996)
- The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.
- Microscopic analysis of thermodynamic parameters from 160 MeV/n - 160 GeV/n (1997)
- Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient "equilibrium" state remains ambiguous.
- Can momentum correlations proof kinetic equilibration in heavy ion collisions at 160/A-GeV? (1998)
- We perform an event-by-event analysis of the transverse momentum distribution of final state particles in central Pb(160AGeV)+Pb collisions within a microscopic non-equilibrium transport model (UrQMD). Strong influence of rescattering is found. The extracted momentum distributions show less fluctuations in A+A collisions than in p+p reactions. This is in contrast to simplified p+p extrapolations and random walk models.
- The origin of transverse flow at the SPS (1998)
- We study the transverse expansion in central Pb+Pb collisions at the CERN SPS. Strong collective motion of hadrons can be created. This flow is mainly due to meson baryon rescattering. It allows to study the angular distribution of intermediate mass meson baryon interactions.
- Nuclear broadening effects on hard prompt photons at relativistic energies (2001)
- We calculate prompt photon production in high-energy nuclear collisions. We focus on the broadening of the intrinsic transverse momenta of the partons in the initial state from nuclear e ects, and their influence on the prompt photon pt distribution. Comparing to WA98 data from Pb+Pb collisions at s = 17.4A GeV we find evidence for the presence of nuclear broadening at high pt in this hard process. Below pt < 2.7 GeV the photon distribution is due to small momentum transfer processes. At RHIC energy, s = 200A GeV, the e ect of intrinsic transverse momentum on the spectrum of prompt photons is less prominent. The region pt = 3 4 GeV would be the most promising for studying the nuclear broadening effects at that energy. Below pt = 2 3 GeV the contribution from large momentum transfers flattens out, and we expect that region to be dominated by soft contributions.
- Nuclear broadening effects on hard prompt photons at CERN-SPS and BNL-RHIC energies (2001)
- We calculate prompt photon production in high-energy nuclear collisions. We focus on the broadening of the intrinsic transverse momenta of the partons in the initial state from nuclear effects, and their influence on the prompt photon pt distribution. Comparing to WA98 data from Pb+Pb collisions at s = 17.4A GeV we find evidence for the presence of nuclear broadening at high pt in this hard process. Below pt < 2.7 GeV the photon distribution is due to small momentum transfer processes. At RHIC energy, s = 200A GeV, the e ect of intrinsic transverse momentum on the spectrum of prompt photons is less prominent. The region pt = 3 4 GeV would be the most promising for studying the nuclear broadening e ects at that energy. Below pt = 2 3 GeV the contribution from large momentum transfers flattens out, and we expect that region to be dominated by soft contributions.
- Color screening and the suppression of the charmonium state yield in nuclear reactions (2003)
- We discuss the new data for the production of the psi meson in pA collisions at 450 GeV at CERNSPS (of the NA50-collaboration) [1]. We extract from the CERN data sigma(psi'N) 8 mb under the assumption that the psi is produced as a result of the space-time evolution of a point-like c¯c pair which expands with time to the full size of the charmonium state. In the analysis we assume the existence of a relationship between the distribution of color in a hadron and the cross section of its interaction with a nucleon. However, our result is rather sensitive to the pattern of the expansion of the wave packet and significantly larger values of sigma(psi'N)are not ruled out by the data. We show that recent CERN data confirm the suggestion of ref. [2] that color fluctuations of the strengths in charmonium-nucleon interaction are the major source of suppression of the J/psi yield as observed at CERN in both pA and AA collisions.
- J/Psi production, chi polarization and color fluctuations (1998)
- The hard contributions to the heavy quarkonium-nucleon cross sections are calculated based on the QCD factorization theorem and the nonrelativistic quarkonium model. We evaluate the nonperturbative part of these cross sections which dominates at psNN 20 GeV at the Cern Super Proton Synchrotron (SPS) and becomes a correction at psNN 6 TeV at the CERN Large Hadron Collider (LHC). J/psi production at the CERN SPS is well described by hard QCD, when the larger absorption cross sections of the states predicted by QCD are taken into account. We predict an A-dependent polarization of the states. The expansion of small wave packets is discussed.