- Nucleus-nucleus collisions at highest energies (1996)
- The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.
- Modeling J /Psi production and absorption in a microscopic nonequilibrium approach (1999)
- Charmonium production and absorption in heavy ion collisions is studied with the Ultrarelativisitic Quantum Molecular Dynamics model. We compare the scenario of universal and time independent color-octet dissociation cross sections with one of distinct color-singlet J/psi, psi 2 and CHIc states, evolving from small, color transparent configurations to their asymptotic sizes. The measured J/psi production cross sections in pA and AB collisions at SPS energies are consistent with both purely hadronic scenarios. The predicted rapidity dependence of J/psi suppression can be used to discriminate between the two experimentally. The importance of interactions with secondary hadrons and the applicability of thermal reaction kinetics to J/psi absorption are in- vestigated. We discuss the e ect of nuclear stopping and the role of leading hadrons. The dependence of the 2/J/psi ratio on the model assumptions and the possible influence of refeeding processes is also studied.