Refine
Keywords
- Kollisionen schwerer Ionen (6) (remove)
- Creation of strange matter at low initial m/T (1996)
- We demonstrate that the creation of strange matter is conceivable in the midrapidity region of heavy ion collisions at Brookhaven RHIC and CERN LHC. A finite net-baryon density, abundant (anti)strangeness production, as well as strong net-baryon and net-strangeness fluctuations, provide suitable initial conditions for the formation of strangelets or metastable exotic multistrange ( baryonic) objects. Even at very high initial entropy per baryon SyAinit ¯ 500 and low initial baryon numbers of Ainit B ¯ 30 a quark-gluon-plasma droplet can immediately charge up with strangeness and accumulate net-baryon number. PACS numbers: 25.75.Dw, 12.38.Mh, 24.85.+
- Critical review of quark gluon plasma signatures (1999)
- Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
- Dissociation rates of J / psi's with comoving mesons : thermal versus nonequilibrium scenario. (1998)
- We study J/psi dissociation processes in hadronic environments. The validity of a thermal meson gas ansatz is tested by confronting it with an alternative, nonequilibrium scenario. Heavy ion collisions are simulated in the frame- work of the microscopic transport model UrQMD, taking into account the production of charmonium states through hard parton-parton interactions and subsequent rescattering with hadrons. The thermal gas and microscopic transport scenarios are shown to be very dissimilar. Estimates of J/psi survival probabilities based on thermal models of comover interactions in heavy ion collisions are therefore not reliable.
- Dynamics of strangeness production and strange matter formation (1996)
- We want to draw the attention to the dynamics of a (finite) hadronizing quark matter drop. Strange and antistrange quarks do not hadronize at the same time for a baryon-rich system1. Both the hadronic and the quark matter phases enter the strange sector fs 6= 0 of the phase diagram almost immediately, which has up to now been neglected in almost all calculations of the time evolution of the system. Therefore it seems questionable, whether final particle yields reflect the actual thermodynamic properties of the system at a certain stage of the evolution. We put special interest on the possible formation of exotic states, namely strangelets (multistrange quark clusters). They may exist as (meta-)stable exotic isomers of nuclear matter 2. It was speculated that strange matter might exist also as metastable exotic multi-strange (baryonic) objects (MEMO s 3). The possible creation in heavy ion collisions of long-lived remnants of the quark-gluon-plasma, cooled and charged up with strangeness by the emission of pions and kaons, was proposed in 1,4,5. Strangelets can serve as signatures for the creation of a quark gluon plasma. Currently, both at the BNL-AGS and at the CERN-SPS experiments are carried out to search for MEMO s and strangelets, e. g. by the E864, E878 and the NA52 collaborations9,
- Hypermatter : properties and formation in relativistic nuclear collisions (1995)
- The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.
- Intermediate mass dileptons from secondary Drell-Yan processes (1998)
- Recent reports on enhancements of intermediate and hight mass muon pairs producedin heavy ion collisions have attracted much attention.