### Refine

#### Keywords

- Hadron Materie (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)
- Plasma (1)
- Quark Materie (1)
- Statistical model (1)
- equation of state (1)
- hadron matter (1)
- plasma (1)
- quark matter (1)
- thermalization (1)

- Statistical mechanics of semi-classical colored objects (1999)
- A microscopic model of deconfined matter based on color interactions between semi-classical quarks is studied. A hadronization mechanism is imposed to examine the properties and the disassembly of a thermalized quark plasma and to investigate the possible existence of a phase transition from quark matter to hadron matter.

- Local thermal and chemical equilibration and the equation of state in relativistic heavy ion collisions (1998)
- Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.

- Local thermodynamical equilibrium and the equation of state of hot, dense matter created in Au+Au collisions at AGS (1998)
- Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.