### Refine

#### Year of publication

#### Document Type

- Article (34) (remove)

#### Keywords

- Heavy-ion collisions (3)
- Kollisionen schwerer Ionen (3)
- Drell-Yan (2)
- heavy ion collisions (2)
- Anti de Sitter space (1)
- Black hole (1)
- Black holes (1)
- Charmed meson production (1)
- Chiral phase transition (1)
- DNA repair (1)

#### Institute

- Shear transport far from equilibrium via holography (2020)
- In heavy-ion collisions, the quark-gluon plasma is produced far from equilibrium. This regime is currently inaccessible by direct quantum chromodynamics (QCD) computations. In a holographic context, we propose a general method to characterize transport properties based on well-defined two-point functions. We calculate shear transport and entropy far from equilibrium, defining a time-dependent ratio of shear viscosity to entropy density, . Large deviations from its near-equilibrium value , up to a factor of 2.5, are found for realistic situations at the Large Hadron Collider. We predict the far-from-equilibrium time-dependence of to substantially affect the evolution of the QCD plasma and to impact the extraction of QCD properties from flow coefficients in heavy-ion collision data.

- Conserved charge fluctuations are not conserved during the hadronic phase (2017)
- We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.

- Processes of hypernuclei formation in relativistic ion collisions (2018)
- The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).

- Formation of hypermatter and hypernuclei within transport models in relativistic ion collisions (2015)
- Within a combined approach we investigate the main features of the production of hyper-fragments in relativistic heavy-ion collisions. The formation of hyperons is modeled within the UrQMD and HSD transport codes. To describe the hyperon capture by nucleons and nuclear residues a coalescence of baryons (CB) model was developed. We demonstrate that the origin of hypernuclei of various masses can be explained by typical baryon interactions, and that it is similar to processes leading to the production of conventional nuclei. At high beam energies we predict a saturation of the yields of all hyper-fragments, therefore, this kind of reactions can be studied with high yields even at the accelerators of moderate relativistic energies.

- Anomalous hydrodynamics kicks neutron stars (2016)
- Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

- Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line (2016)
- We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon–nucleon centre-of-mass energy range 4.7–2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained “true” hadronization pseudo-critical line κ is found to be 0.0048 ± 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing is found to be 164.3 ± 1.8 MeV.

- Determination of the structure of the X(3872) in p¯A collisions (2015)
- Currently, the structure of the X(3872) meson is unknown. Different competing models of the exotic state X(3872) exist, including the possibilities that this state is either a mesonic molecule with dominating D0D¯ ∗0 + c.c. composition, a tetraquark, or a -gluon hybrid state. It is expected that the X(3872) state is rather strongly coupled to the channel and, therefore, can be produced in and collisions at PANDA. We propose to test the hypothetical molecular structure of by studying the D or D¯⁎ stripping reactions on a nuclear residue.

- Entropy production and reheating at the chiral phase transition (2019)
- We study the production of entropy in the context of a nonequilibrium chiral phase transition. The dynamical symmetry breaking is modeled by a Langevin equation for the order parameter coupled to the Bjorken dynamics of a quark plasma. We investigate the impact of dissipation and noise on the entropy and explore the possibility of reheating for crossover and first-order phase transitions, depending on the expansion rate of the fluid. The relative increase in is estimated to range from 10% for a crossover to 100% for a first-order phase transition at low beam energies, which could be detected in the pion-to-proton ratio as a function of beam energy.

- Unruh thermal hadronization and the cosmological constant (2018)
- We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.

- Unparticle contribution to the hydrogen atom ground state energy (2016)
- In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh–Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale U as a function of the scaling dimension and the coupling constant λ are derived. We show that there exists a parameter region where bounds on U ar are stringent, signaling that unparticles could be tested in atomic physics experiments.