### Refine

#### Year of publication

- 2005 (17) (remove)

#### Document Type

- Preprint (17) (remove)

#### Keywords

- Gravitational radiation (1)
- Hadron (1)
- Modell (1)
- Partikelzahlschwankung (1)
- Transport (1)
- elastic particle (1)
- mixing of hadron sources (1)
- particle number fluctuations (1)
- transport models (1)

#### Institute

- Gravitational radiation from elastic particle scattering in models with extra dimensions (2005)
- In this paper we derive a formula for the energy loss due to elastic N to N particle scattering in models with extra dimensions that are compactified on a radius R. In contrast to a previous derivation we also calculate additional terms that are suppressed by factors of frequency over compactification radius. In the limit of a large compactification radius R those terms vanish and the standard result for the non compactified case is recovered.

- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k

- Black hole remnants at the LHC (2005)
- Within the scenario of large extra dimensions, the Planck scale is lowered to values soon accessible. Among the predicted effects, the production of TeV mass black holes at the LHC is one of the most exciting possibilities. Though the final phases of the black hole’s evaporation are still unknown, the formation of a black hole remnant is a theoretically well motivated expectation. We analyze the observables emerging from a black hole evaporation with a remnant instead of a final decay. We show that the formation of a black hole remnant yields a signature which differs substantially from a final decay. We find the total transverse momentum of the black hole event to be significantly dominated by the presence of a remnant mass providing a strong experimental signature for black hole remnant formation.

- Probing the equation of state with pions (2005)
- The influence of the isospin-independent, isospin- and momentum-dependent equation of state (EoS), as well as the Coulomb interaction on the pion production in intermediate energy heavy ion collisions (HICs) is studied for both isospin-symmetric and neutron-rich systems. The Coulomb interaction plays an important role in the reaction dynamics, and strongly influences the rapidity and transverse momentum distributions of charged pions. It even leads to the pi- pi+ ratio deviating slightly from unity for isospin-symmetric systems. The Coulomb interaction between mesons and baryons is also crucial for reproducing the proper pion flow since it changes the behavior of the directed and the elliptic flow components of pions visibly. The EoS can be better investigated in neutron-rich system if multiple probes are measured simultaneously. For example, the rapidity and the transverse momentum distributions of the charged pions, the pi- pi+ ratio, the various pion flow components, as well as the difference of pi+-pi- flows. A new sensitive observable is proposed to probe the symmetry potential energy at high densities, namely the transverse momentum distribution of the elliptic flow difference [Delta v_2^pi+ - pi-(p_t rm c.m.].

- Resonance absorption and regeneration in relativistic heavy ion collisions (2005)
- The regeneration of hadronic resonances is discussed for heavy ion collisions at SPS and SIS-300 energies. The time evolutions of Delta, rho and phi resonances are investigated. Special emphasize is put on resonance regeneration after chemical freeze-out. The emission time spectra of experimentally detectable resonances are explored.

- Detecting QGP with charge transfer fluctuations (2005)
- In this study, we analyze the recently proposed charge transfer fluctuations within a finite pseudo-rapidity space. As the charge transfer fluctuation is a measure of the local charge correlation length, it is capable of detecting inhomogeneity in the hot and dense matter created by heavy ion collisions. We predict that going from peripheral to central collisions, the charge transfer fluctuations at midrapidity should decrease substantially while the charge transfer fluctuations at the edges of the observation window should decrease by a small amount. These are consequences of having a strongly inhomogeneous matter where the QGP component is concentrated around midrapidity. We also show how to constrain the values of the charge correlations lengths in both the hadronic phase and the QGP phase using the charge transfer fluctuations.

- Probing the density dependence of the symmetry potential in intermediate energy heavy ion collisions (2005)
- Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Delta-/Delta++ and pi -/pi + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the pi -/pi + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the pi -/pi + ratio significantly, though it alters only slightly the pi- and pi+ total yields. The pi- yields, especially at midrapidity or at low transverse momenta and the p-/pi+ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K0 and K+ mesons, is also investigated.

- Event-by-event analysis of baryon-strangeness correlations : pinning down the critical temperature and volume of QGP formation (2005)
- The recently proposed baryon-strangeness correlation (C_BS) is studied with a string-hadronic transport model (UrQMD) for various energies from E_lab=4 AGeV to \sqrt s=200 AGeV. It is shown that rescattering among secondaries can not mimic the predicted correlation pattern expected for a Quark-Gluon-Plasma. However, we find a strong increase of the C_BS correlation function with decreasing collision energy both for pp and Au+Au/Pb+Pb reactions. For Au+Au reactions at the top RHIC energy (\sqrt s=200 AGeV), the C_BS correlation is constant for all centralities and compatible with the pp result. With increasing width of the rapidity window, C_BS follows roughly the shape of the baryon rapidity distribution. We suggest to study the energy and centrality dependence of C_BS which allow to gain information on the onset of the deconfinement transition in temperature and volume.

- Trapping black hole remnants (2005)
- Large extra dimensions lower the Planck scale to values soon accessible. The production of TeV mass black holes at the LHC is one of the most exciting predictions. However, the final phases of the black hole's evaporation are still unknown and there are strong indications that a black hole remnant can be left. Since a certain fraction of such objects would be electrically charged, we argue that they can be trapped. In this paper, we examine the occurrence of such charged black hole remnants. These trapped remnants are of high interest, as they could be used to closely investigate the evaporation characteristics. Due to the absence of background from the collision region and the controlled initial state, the signal would be very clear. This would allow to extract information about the late stages of the evaporation process with high precision.

- Reconstructing rho 0 and omega mesons from non-leptonic decays in C+C at 2AGeV (2005)
- We predict transverse and longitudinal momentum spectra and yields of rho 0 and omega mesons reconstructed from hadron correlations in C+C reactions at 2~AGeV. The rapidity and pT distributions for reconstructable rho 0 mesons differs strongly from the primary distribution, while the omega's distributions are only weakly modified. We discuss the temporal and spatial distributions of the particles emitted in the hadron channel. Finally, we report on the mass shift of the rho 0 due to its coupling to the N*(1520), which is observable in both the di-lepton and pi pi channel. Our calculations can be tested with the Hades experiment at GSI, Darmstadt.