### Refine

#### Year of publication

#### Document Type

- Preprint (99)
- Article (34)
- Conference Proceeding (14)
- Contribution to a Periodical (1)
- Review (1)

#### Keywords

- Kollisionen schwerer Ionen (8)
- Kollisionen schwerer Ionen (8)
- heavy ion collisions (7)
- heavy ion collisions (7)
- UrQMD (6)
- Drell-Yan (3)
- Heavy-ion collisions (3)
- MEMOs (3)
- QGP (3)
- QGP (3)

#### Institute

- Shear transport far from equilibrium via holography (2020)
- In heavy-ion collisions, the quark-gluon plasma is produced far from equilibrium. This regime is currently inaccessible by direct quantum chromodynamics (QCD) computations. In a holographic context, we propose a general method to characterize transport properties based on well-defined two-point functions. We calculate shear transport and entropy far from equilibrium, defining a time-dependent ratio of shear viscosity to entropy density, . Large deviations from its near-equilibrium value , up to a factor of 2.5, are found for realistic situations at the Large Hadron Collider. We predict the far-from-equilibrium time-dependence of to substantially affect the evolution of the QCD plasma and to impact the extraction of QCD properties from flow coefficients in heavy-ion collision data.

- Entropy production and reheating at the chiral phase transition (2019)
- We study the production of entropy in the context of a nonequilibrium chiral phase transition. The dynamical symmetry breaking is modeled by a Langevin equation for the order parameter coupled to the Bjorken dynamics of a quark plasma. We investigate the impact of dissipation and noise on the entropy and explore the possibility of reheating for crossover and first-order phase transitions, depending on the expansion rate of the fluid. The relative increase in is estimated to range from 10% for a crossover to 100% for a first-order phase transition at low beam energies, which could be detected in the pion-to-proton ratio as a function of beam energy.

- Taming the energy rise of the total proton-proton cross-section (2019)
- Steep rise of parton densities in the limit of small parton momentum fraction x poses a challenge for describing the observed energy-dependence of the total and inelastic proton-proton cross sections σtot/inelpp : considering a realistic parton spatial distribution, one obtains a too-strong increase of σtot/inelpp in the limit of very high energies. We discuss various mechanisms which allow one to tame such a rise, paying special attention to the role of parton-parton correlations. In addition, we investigate a potential impact on model predictions for σtotpp, related to dynamical higher twist corrections to parton-production process.

- Constraints on the string t-duality propagator from the hydrogen atom (2019)
- We investigated the implications of string theory in the high-precision regime of quantum mechanics. In particular, we examined a quantum field theoretical propagator which was derived from string theory when compactified at the T-duality self-dual radius and which is closely related to the path integral duality. Our focus was on the hydrogen ground state energy and the 1S1/2−2S1/2 transition frequency, as they are the most precisely explored properties of the hydrogen atom. The T-duality propagator alters the photon field dynamics leading to a modified Coulomb potential. Thus, our study is complementary to investigations where the electron evolution is modified, as in studies of a minimal length in the context of the generalized uncertainty principle. The first manifestation of the T-duality propagator arises at fourth order in the fine-structure constant, including a logarithmic term. For the first time, constraints on the underlying parameter, the zero-point length, are presented. They reach down to 3.9×10−19m and are in full agreement with previous studies on black holes.

- Elliptic flow and RAA of D mesons at FAIR comparing the UrQMD hybrid model and the coarse-graining approach (2019)
- We present a study of the elliptic flow and RAA of D and D¯ mesons in Au+Au collisions at FAIR energies. We propagate the charm quarks and the D mesons following a previously applied Langevin dynamics. The evolution of the background medium is modeled in two different ways: (I) we use the UrQMD hydrodynamics + Boltzmann transport hybrid approach including a phase transition to QGP and (II) with the coarse-graining approach employing also an equation of state with QGP. The latter approach has previously been used to describe di-lepton data at various energies very successfully. This comparison allows us to explore the effects of partial thermalization and viscous effects on the charm propagation. We explore the centrality dependencies of the collisions, the variation of the decoupling temperature and various hadronization parameters. We find that the initial partonic phase is responsible for the creation of most of the D/D¯ mesons elliptic flow and that the subsequent hadronic interactions seem to play only a minor role. This indicates that D/D¯ mesons elliptic flow is a smoking gun for a partonic phase at FAIR energies. However, the results suggest that the magnitude and the details of the elliptic flow strongly depend on the dynamics of the medium and on the hadronization procedure, which is related to the medium properties as well. Therefore, even at FAIR energies the charm quark might constitute a very useful tool to probe the quark–gluon plasma and investigate its physics.

- Processes of hypernuclei formation in relativistic ion collisions (2018)
- The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).

- Unruh thermal hadronization and the cosmological constant (2018)
- We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.

- Final state hadronic rescattering with UrQMD (2018)
- In this talk we discuss the effects of the hadronic rescattering on final state observables in high energy nuclear collisions. We do so by employing the UrQMD transport model for a realistic description of the hadronic decoupling process. The rescattering of hadrons modifies every hadronic bulk observable. For example apparent multiplicity of resonances is suppressed as compared to a chemical equilibrium freeze-out model. Stable and unstable particles change their momentum distribution by more than 30% through rescattering. The hadronic rescattering also leads to a substantial decorrelation of the conserved charge distributions. These findings show that it is all but trivial to conclude from the final state observables on the properties of the system at an earlier time where it may have been in or close to local equilibrium.

- Conserved charge fluctuations are not conserved during the hadronic phase (2017)
- We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.