Refine
Year of publication
Document Type
- Preprint (39)
- Article (6)
- Conference Proceeding (2)
Keywords
- Kollision (2)
- Zustandsgleichung (2)
- collision (2)
- equation of state (2)
- quark-gluon plasma (2)
- Cluster integrals (1)
- Conservation (1)
- Drell-Yan ratio (1)
- Equation of state (1)
- Fluctuations of conserved charges (1)
Institute
- Transverse momentum spectra of J/psi and psi prime mesons from quark gluon plasma hadronization in nuclear collisions (2001)
- Recent results on transverse mass spectra of J/psi and psi prime mesons in central Pb+Pb collisions at 158 AGeV are considered. It is shown that those results support a hypothesis of statistical production of charmonia at hadronization and suggest the early thermal freeze-out of J/psi and psi prime mesons. Based on this approach the collective transverse velocity of hadronizing quark gluon plasma is estimated to be <v^H_T> \approx 0.2. Predictions for transverse mass spectra of hidden and open charm mesons at SPS and RHIC are discussed.
- Omega, J/psi and psi' production in nuclear collisions and quark gluon plasma hadronization (2002)
- The transverse mass spectra of Omega, J/psi and psi' in Pb+Pb collisions at 158 AGeV are studied within a hydrodynamical model of the quark gluon plasma expansion and hadronization. The model reproduces the existing data with the common hadronization parameters: temperature T=T_H = 170 MeV and average collective transverse velocity v_T = 0.2.
- Omega, J/psi and psi' transverse mass spectra at RHIC (2002)
- The transverse mass spectra of J/psi and psi' mesons and Omega hyperons produced in central Au+Au collisions at RHIC energies are discussed within a statistical model used successfully for the interpretation of the SPS results. The comparison of the presented model with the future RHIC data should serve as a further crucial test of the hypothesis of statistical production of charmonia at hadronization. Finally, in case of validity, the approach should allow to estimate the mean transverse flow velocity at the quark gluon plasma hadronization.
- Transverse activity of kaons and the deconfinement phase transition in nucleus-nucleus collisions (2003)
- We found that the experimental results on transverse mass spectra of kaons produced in central Pb+Pb (Au+Au) interactions show an anomalous dependence on the collision energy. The inverse slopes of the spectra increase with energy in the low (AGS) and high (RHIC) energy domains, whereas they are constant in the intermediate (SPS) energy range. We argue that this anomaly is probably caused by a modification of the equation of state in the transition region between confined and deconfined matter. This observation may be considered as a new signal, in addition to the previously reported anomalies in the pion and strangeness production, of the onset of deconfinement located in the low SPS energy domain.
- Transparency, mixing and reflection of initial flows in relativistic nuclear collisions (2006)
- We propose to use the hadron number fluctuations in the limited momentum regions to study the evolution of initial flows in high energy nuclear collisions. In this method by a proper preparation of a collision sample the projectile and target initial flows are marked in fluctuations in the number of colliding nucleons. We discuss three limiting cases of the evolution of flows, transparency, mixing and reflection, and present for them quantitative predictions obtained within several models. Finally, we apply the method to the NA49 results on fluctuations of the negatively charged hadron multiplicity in Pb+Pb interactions at 158A GeV and conclude that the data favor a hydrodynamical model with a significant degree of mixing of the initial flows at the early stage of collisions.
- Pion chemical equilibration in heavy ion collisions : relativistic quantum molecular dynamic analysis (1992)
- In the framework of relativistic quantum molecular dynamics the authors find that the pion system produced in central heavy-ion collisions at Elab/A approximately 1 GeV/nucl. is out of chemical equilibrium. Pion chemical potential is large and decreases during the expansion stage.
- Chemical freezeout in relativistic A+A collisions: is it close to the QGP? (1997)
- Preliminary experimental data for particle number ratios in the collisions of Au+Au at the BNL AGS (11A GeV/c) and Pb+Pb at the CERN SPS (160A GeV/c) are analyzed in a thermodynamically consistent hadron gas model with excluded volume. Large values of temperature, T = 140 185 MeV, and baryonic chemical potential, µb = 590 270 MeV, close to the boundary of the quark-gluon plasma phase are found from fitting the data. This seems to indicate that the energy density at the chemical freezeout is tremendous which would be indeed the case for the point-like hadrons. However, a self-consistent treatment of the van der Waals excluded volume reveals much smaller energy densities which are very far below a lowest limit estimate of the quark-gluon plasma energy density. PACS number(s): 25.75.-q, 24.10.Pa
- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k
- Second cluster integral and excluded volume effects for the pion gas (2000)
- The quantum mechanical formula for Mayer s second cluster integral for the gas of relativistic particles with hard-core interaction is derived. The proper pion volume calculated with quantum mechanical formula is found to be an order of magnitude larger than its classical evaluation. The second cluster integral for the pion gas is calculated in quantum mechanical approach with account for both attractive and hard-core repulsive interactions. It is shown that, in the second cluster approximation, the repulsive -interactions as well as the finite width of resonances give important but almost canceling contributions. In contrast, an appreciable deviation from the ideal gas of pions and pion resonances is observed beyond the second clus- ter approximation in the framework of the Van der Waals excluded-volume model.
- Statistical coalescence model with exact charm conservation (2001)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.