### Refine

#### Year of publication

#### Keywords

#### Institute

- Baryon number conservation and statistical production of antibaryons (2000)
- The statistical production of antibaryons is considered within the canonical ensemble formulation. We demonstrate that the antibaryon suppression in small systems due to the exact baryon number conservation is rather different in the baryon-free (B=0) and baryon-rich (B>1) systems. At constant values of temperature and baryon density in the baryon-rich systems the density of the produced antibaryons is only weakly dependent on the size of the system. For realistic hadronization conditions this dependence appears to be close to B/(B+1) which is in agreement with the preliminary data of the NA49 Collaboration for the antiproton/pion ratio in nucleus-nucleus collisions at the CERN SPS energies. However, a consistent picture of antibaryon production within the statistical hadronization model has not yet been achieved. This is because the condition of constant hadronization temperature in the baryon-free systems leads to a contradiction with the data on the antiproton/pion ratio in e+e- interactions.

- Charm estimate from the dilepton spectra in nuclear collisions (2001)
- A validity of a recent estimate of an upper limit of charm production in central Pb+Pb collisions at 158 AGeV is critically discussed. Within a simple model we study properties of the background subtraction procedure used for an extraction of the charm signal from the analysis of dilepton spectra. We demonstrate that a production asymmetry between positively and negatively charged background muons and a large multiplicity of signal pairs leads to biased results. Therefore the applicability of this procedure for the analysis of nucleus-nucleus data should be reconsidered before final conclusions on the upper limit estimate of charm production could be drawn.

- Comment on 'Comparison of strangeness production between A + A and p + p reactions from 2 to 160 A GeV', by J. C. Dunlop and C. A. Ogilvie (2000)
- A recent paper on energy dependence of strangeness production in A+A and p+p interactions written by Dunlop and Ogilvie (Phys. ReV. C61 031901(R) (2000) indicates that there is a significant misunderstanding about the concept of strangeness enhancement and its role as a signal of Quark Gluon Plasma creation. In this comment we will try to clarify some essential points. 25.75.Dw, 13.85.Ni, 21.65.+f

- Critical line of the deconfinement phase transition (2005)
- Phase diagram of strongly interacting matter is discussed within the exactly solvable statistical model of the quark-gluon bags. The model predicts two phases of matter: the hadron gas at a low temperature T and baryonic chemical potential muB, and the quark-gluon gas at a high T and/or muB. The nature of the phase transition depends on a form of the bag mass-volume spectrum (its pre-exponential factor), which is expected to change with the muB/T ratio. It is therefore likely that the line of the 1st} order transition at a high muB/T ratio is followed by the line of the 2nd order phase transition at an intermediate muB/T, and then by the lines of "higher order transitions" at a low muB/T.

- Evidence for statistical production of J/psi mesons in nuclear collisions at the CERN SPS (1999)
- The hypothesis of statistical production of J/psi mesons at hadronization is formulated and checked against experimental data. It explains in the natural way the observed scaling behavior of the J/psi to pion ratio at the CERN SPS energies. Using the multiplicities of J/psi and eta mesons the hadronization temperature T_H = 175 MeV is found, which agrees with the previous estimates of the temperature parameter based on the analysis of the hadron yield systematics.

- Fluctuations and deconfinement phase transition in nucleus-nucleus collisions (2004)
- We propose a method to experimentally study the equation of state of strongly interacting matter created at the early stage of nucleus--nucleus collisions. The method exploits the relation between relative entropy and energy fluctuations and equation of state. As a measurable quantity, the ratio of properly filtered multiplicity to energy fluctuations is proposed. Within a statistical approach to the early stage of nucleus-nucleus collisions, the fluctuation ratio manifests a non--monotonic collision energy dependence with a maximum in the domain where the onset of deconfinement occurs.

- Fluctuations of strangeness and deconfinement phase transition in nucleus-nucleus collisions (2004)
- We suggest that the fluctuations of strange hadron multiplicity could be sensitive to the equation of state and microscopic structure of strongly interacting matter created at the early stage of high energy nucleus-nucleus collisions. They may serve as an important tool in the study of the deconfinement phase transition. We predict, within the statistical model of the early stage, that the ratio of properly filtered fluctuations of strange to non-strange hadron multiplicities should have a non-monotonic energy dependence with a minimum in the mixed phase region.

- Hadron spectra and QGP hadronization in Au + Au collisions at RHIC (2002)
- The transverse mass spectra of Omega hyperons and phi mesons measured recently by STAR Collaboration in Au+Au collisions at sqrt(s_NN) = 130 GeV are described within a hydrodynamic model of the quark gluon plasma expansion and hadronization. The flow parameters at the plasma hadronization extracted by fitting these data are used to predict the transverse mass spectra of J/psi and psi' mesons.

- Incident-energy dependence of the effective temperature in heavy-ion collisions (2003)
- We study the behaviour of the effective temperature for K+ in several energy domains. For this purpose, we apply the recently developed SPheRIO code for hydrodynamics in 3+1 dimensions, using both Landau-type compact initial conditions and spatially more spread ones. We show that initial conditions given in small volume, like Landau-type ones, are unable to reproduce the effective temperature together with other data (multiplicities and rapidity distributions). These quantities can be reproduced altogether only when using a large initial volume with an appropriate velocity distribution.

- Omega, J/psi and psi' production in nuclear collisions and quark gluon plasma hadronization (2002)
- The transverse mass spectra of Omega, J/psi and psi' in Pb+Pb collisions at 158 AGeV are studied within a hydrodynamical model of the quark gluon plasma expansion and hadronization. The model reproduces the existing data with the common hadronization parameters: temperature T=T_H = 170 MeV and average collective transverse velocity v_T = 0.2.