### Refine

#### Year of publication

#### Document Type

- Preprint (39) (remove)

#### Keywords

- Kollision (2)
- collision (2)
- equation of state (2)
- quark-gluon plasma (2)
- Cluster integrals (1)
- Drell-Yan ratio (1)
- Hadron (1)
- Hadron Gas Modell (1)
- J/psi Erhöhung (1)
- J/psi Unterdrückung (1)

#### Institute

- Physik (39) (remove)

- Comment on 'Comparison of strangeness production between A + A and p + p reactions from 2 to 160 A GeV', by J. C. Dunlop and C. A. Ogilvie (2000)
- A recent paper on energy dependence of strangeness production in A+A and p+p interactions written by Dunlop and Ogilvie (Phys. ReV. C61 031901(R) (2000) indicates that there is a significant misunderstanding about the concept of strangeness enhancement and its role as a signal of Quark Gluon Plasma creation. In this comment we will try to clarify some essential points. 25.75.Dw, 13.85.Ni, 21.65.+f

- Baryon number and electric charge fluctuations in Pb+Pb collisions at SPS energies (2006)
- Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrate that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.

- Local thermal and chemical equilibration and the equation of state in relativistic heavy ion collisions (1998)
- Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.

- Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis (1999)
- The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.

- Local thermodynamical equilibrium and the equation of state of hot, dense matter created in Au+Au collisions at AGS (1998)
- Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.

- Particle number fluctuations in canonical ensemble (2004)
- Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus, the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations. In view of a possible relevance of the results for the analysis of fluctuations in nuclear collisions at high energies, a role of the limited kinematical acceptance is studied.

- Charm estimate from the dilepton spectra in nuclear collisions (2001)
- A validity of a recent estimate of an upper limit of charm production in central Pb+Pb collisions at 158 AGeV is critically discussed. Within a simple model we study properties of the background subtraction procedure used for an extraction of the charm signal from the analysis of dilepton spectra. We demonstrate that a production asymmetry between positively and negatively charged background muons and a large multiplicity of signal pairs leads to biased results. Therefore the applicability of this procedure for the analysis of nucleus-nucleus data should be reconsidered before final conclusions on the upper limit estimate of charm production could be drawn.

- Van der Waals excluded volume model for Lorentz contracted rigid spheres (2000)
- Conventional cluster and virial expansions are generalized to momentum dependent interparticle potentials. The model with Lorentz contracted hard core potentials is considered, e.g. as hadron gas model. A Van der Waals-type model with a temperature dependent excluded volume is derived. Lorentz contraction effects at given temperature are stronger for light particles and make their effective excluded volume smaller than that of heavy ones.

- Transverse momentum spectra of J/psi and psi prime mesons from quark gluon plasma hadronization in nuclear collisions (2001)
- Recent results on transverse mass spectra of J/psi and psi prime mesons in central Pb+Pb collisions at 158 AGeV are considered. It is shown that those results support a hypothesis of statistical production of charmonia at hadronization and suggest the early thermal freeze-out of J/psi and psi prime mesons. Based on this approach the collective transverse velocity of hadronizing quark gluon plasma is estimated to be <v^H_T> \approx 0.2. Predictions for transverse mass spectra of hidden and open charm mesons at SPS and RHIC are discussed.

- Omega, J/psi and psi' production in nuclear collisions and quark gluon plasma hadronization (2002)
- The transverse mass spectra of Omega, J/psi and psi' in Pb+Pb collisions at 158 AGeV are studied within a hydrodynamical model of the quark gluon plasma expansion and hadronization. The model reproduces the existing data with the common hadronization parameters: temperature T=T_H = 170 MeV and average collective transverse velocity v_T = 0.2.