### Refine

#### Year of publication

#### Document Type

- Preprint (39) (remove)

#### Keywords

- Kollision (2)
- collision (2)
- equation of state (2)
- quark-gluon plasma (2)
- Cluster integrals (1)
- Drell-Yan ratio (1)
- Hadron (1)
- Hadron Gas Modell (1)
- J/psi Erhöhung (1)
- J/psi Unterdrückung (1)

#### Institute

- Van der Waals excluded volume model for Lorentz contracted rigid spheres (2000)
- Conventional cluster and virial expansions are generalized to momentum dependent interparticle potentials. The model with Lorentz contracted hard core potentials is considered, e.g. as hadron gas model. A Van der Waals-type model with a temperature dependent excluded volume is derived. Lorentz contraction effects at given temperature are stronger for light particles and make their effective excluded volume smaller than that of heavy ones.

- Transverse momentum spectra of J/psi and psi prime mesons from quark gluon plasma hadronization in nuclear collisions (2001)
- Recent results on transverse mass spectra of J/psi and psi prime mesons in central Pb+Pb collisions at 158 AGeV are considered. It is shown that those results support a hypothesis of statistical production of charmonia at hadronization and suggest the early thermal freeze-out of J/psi and psi prime mesons. Based on this approach the collective transverse velocity of hadronizing quark gluon plasma is estimated to be <v^H_T> \approx 0.2. Predictions for transverse mass spectra of hidden and open charm mesons at SPS and RHIC are discussed.

- Transverse activity of kaons and the deconfinement phase transition in nucleus-nucleus collisions (2003)
- We found that the experimental results on transverse mass spectra of kaons produced in central Pb+Pb (Au+Au) interactions show an anomalous dependence on the collision energy. The inverse slopes of the spectra increase with energy in the low (AGS) and high (RHIC) energy domains, whereas they are constant in the intermediate (SPS) energy range. We argue that this anomaly is probably caused by a modification of the equation of state in the transition region between confined and deconfined matter. This observation may be considered as a new signal, in addition to the previously reported anomalies in the pion and strangeness production, of the onset of deconfinement located in the low SPS energy domain.

- Transparency, mixing and reflection of initial flows in relativistic nuclear collisions (2006)
- We propose to use the hadron number fluctuations in the limited momentum regions to study the evolution of initial flows in high energy nuclear collisions. In this method by a proper preparation of a collision sample the projectile and target initial flows are marked in fluctuations in the number of colliding nucleons. We discuss three limiting cases of the evolution of flows, transparency, mixing and reflection, and present for them quantitative predictions obtained within several models. Finally, we apply the method to the NA49 results on fluctuations of the negatively charged hadron multiplicity in Pb+Pb interactions at 158A GeV and conclude that the data favor a hydrodynamical model with a significant degree of mixing of the initial flows at the early stage of collisions.

- Transition to resonance-rich matter in heavy ion collisions at RHIC energies (2000)
- The equilibration of hot and dense nuclear matter produced in the central region in central Au+Au collisions at square root s = 200A GeV is studied within the microscopic transport model UrQMD. The pressure here becomes isotropic at t approx 5 fm/c. Within the next 15 fm/c the expansion of the matter proceeds almost isentropically with the entropy per baryon ratio S/A approx 150. During this period the equation of state in the (P, epsilon)-plane has a very simple form, P = 0.15 epsilon. Comparison with the statistical model (SM) of an ideal hadron gas reveals that the time of approx 20 fm/c may be too short to attain the fully equilibrated state. Particularly, the fractions of resonances are overpopulated in contrast to the SM values. The creation of such a long-lived resonance-rich state slows down the relaxation to chemical equilibrium and can be detected experimentally.

- The high E(T) drop of J / psi to Drell-Yan ratio from the statistical c anti-c coalescence model (2002)
- The dependence of the J/psi yield on the transverse energy ET in heavy ion collisions is considered within the statistical c¯c coalescence model. The model fits the NA50 data for Pb+Pb collisions at the CERN SPS even in the high-ET region (ET >< 100 GeV). Here ET -fluctuations and ET -losses in the dimuon event sample naturally create the celebrated drop in the J/psi to Drell-Yan ratio.

- Strangeness enhancement in heavy ion collisions - evidence for quark-gluon-matter? (1999)
- The centrality dependence of (multi-)strange hadron abundances is studied for Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The microscopic transport model UrQMD is used for this analysis. The predicted Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A reduction of the constituent quark masses to the current quark masses m_s \sim 230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances the hyperon yields to the experimentally observed high values. Similar results are obtained by an ad hoc overall increase of the color electric field strength (effective string tension of kappa=3 GeV/fm). The enhancement depends strongly on the kinematical cuts. The maximum enhancement is predicted around midrapidity. For Lambda's, strangeness suppression is predicted at projectile/target rapidity. For Omega's, the predicted enhancement can be as large as one order of magnitude. Comparisons of Pb-Pb data to proton induced asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry in the various rapidity distributions of the different (strange) particle species. In p-Pb collisions, strangeness is locally (in rapidity) not conserved. The present comparison to the data of the WA97 and NA49 collaborations clearly supports the suggestion that conventional (free) hadronic scenarios are unable to describe the observed high (anti-)hyperon yields in central collisions. The doubling of the strangeness to nonstrange suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a phase of nearly massless particles.

- Statistical coalescence model with exact charm conservation (2001)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.

- Statistical coalescence model analysis of J / psi production in Pb + Pb collisions at 158 A GeV (2001)
- Production of J/psi mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experi- mental data of the NA50 Collaboration for Pb+Pb collisions at 158 A·GeV in a wide centrality range, including the so called anomalous suppression domain. The model description of the J/ psi data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.

- Second cluster integral and excluded volume effects for the pion gas (2000)
- The quantum mechanical formula for Mayer s second cluster integral for the gas of relativistic particles with hard-core interaction is derived. The proper pion volume calculated with quantum mechanical formula is found to be an order of magnitude larger than its classical evaluation. The second cluster integral for the pion gas is calculated in quantum mechanical approach with account for both attractive and hard-core repulsive interactions. It is shown that, in the second cluster approximation, the repulsive -interactions as well as the finite width of resonances give important but almost canceling contributions. In contrast, an appreciable deviation from the ideal gas of pions and pion resonances is observed beyond the second clus- ter approximation in the framework of the Van der Waals excluded-volume model.