Refine
Year of publication
Document Type
- Preprint (39) (remove)
Keywords
- Kollision (2)
- collision (2)
- equation of state (2)
- quark-gluon plasma (2)
- Cluster integrals (1)
- Drell-Yan ratio (1)
- Hadron (1)
- Hadron Gas Modell (1)
- J/psi Erhöhung (1)
- J/psi Unterdrückung (1)
Institute
- Baryon number and electric charge fluctuations in Pb+Pb collisions at SPS energies (2006)
- Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrate that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.
- Transparency, mixing and reflection of initial flows in relativistic nuclear collisions (2006)
- We propose to use the hadron number fluctuations in the limited momentum regions to study the evolution of initial flows in high energy nuclear collisions. In this method by a proper preparation of a collision sample the projectile and target initial flows are marked in fluctuations in the number of colliding nucleons. We discuss three limiting cases of the evolution of flows, transparency, mixing and reflection, and present for them quantitative predictions obtained within several models. Finally, we apply the method to the NA49 results on fluctuations of the negatively charged hadron multiplicity in Pb+Pb interactions at 158A GeV and conclude that the data favor a hydrodynamical model with a significant degree of mixing of the initial flows at the early stage of collisions.
- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k
- Critical line of the deconfinement phase transition (2005)
- Phase diagram of strongly interacting matter is discussed within the exactly solvable statistical model of the quark-gluon bags. The model predicts two phases of matter: the hadron gas at a low temperature T and baryonic chemical potential muB, and the quark-gluon gas at a high T and/or muB. The nature of the phase transition depends on a form of the bag mass-volume spectrum (its pre-exponential factor), which is expected to change with the muB/T ratio. It is therefore likely that the line of the 1st} order transition at a high muB/T ratio is followed by the line of the 2nd order phase transition at an intermediate muB/T, and then by the lines of "higher order transitions" at a low muB/T.
- Fluctuations of strangeness and deconfinement phase transition in nucleus-nucleus collisions (2004)
- We suggest that the fluctuations of strange hadron multiplicity could be sensitive to the equation of state and microscopic structure of strongly interacting matter created at the early stage of high energy nucleus-nucleus collisions. They may serve as an important tool in the study of the deconfinement phase transition. We predict, within the statistical model of the early stage, that the ratio of properly filtered fluctuations of strange to non-strange hadron multiplicities should have a non-monotonic energy dependence with a minimum in the mixed phase region.
- Fluctuations and deconfinement phase transition in nucleus-nucleus collisions (2004)
- We propose a method to experimentally study the equation of state of strongly interacting matter created at the early stage of nucleus--nucleus collisions. The method exploits the relation between relative entropy and energy fluctuations and equation of state. As a measurable quantity, the ratio of properly filtered multiplicity to energy fluctuations is proposed. Within a statistical approach to the early stage of nucleus-nucleus collisions, the fluctuation ratio manifests a non--monotonic collision energy dependence with a maximum in the domain where the onset of deconfinement occurs.
- Particle number fluctuations in canonical ensemble (2004)
- Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus, the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations. In view of a possible relevance of the results for the analysis of fluctuations in nuclear collisions at high energies, a role of the limited kinematical acceptance is studied.
- Charm coalescence at relativistic energies (2003)
- The J/psi yield at midrapidity at the top RHIC (relativistic heavy ion collider) energy is calculated within the statistical coalescence model, which assumes charmonium formation at the late stage of the reaction from the charm quarks and antiquarks created earlier in hard parton collisions. The results are compared to the new PHENIX data and to predictions of the standard models, which assume formation of charmonia exclusively at the initial stage of the reaction and their subsequent suppression. Two versions of the suppression scenario are considered. One of them assumes gradual charmonium suppression by comovers, while the other one supposes that the suppression sets in abruptly due to quark-gluon plasma formation. Surprisingly, both versions give very similar results. In contrast, the statistical coalescence model predicts a few times larger J/psi yield in the most central collisions.
- Incident-energy dependence of the effective temperature in heavy-ion collisions (2003)
- We study the behaviour of the effective temperature for K+ in several energy domains. For this purpose, we apply the recently developed SPheRIO code for hydrodynamics in 3+1 dimensions, using both Landau-type compact initial conditions and spatially more spread ones. We show that initial conditions given in small volume, like Landau-type ones, are unable to reproduce the effective temperature together with other data (multiplicities and rapidity distributions). These quantities can be reproduced altogether only when using a large initial volume with an appropriate velocity distribution.
- Transverse activity of kaons and the deconfinement phase transition in nucleus-nucleus collisions (2003)
- We found that the experimental results on transverse mass spectra of kaons produced in central Pb+Pb (Au+Au) interactions show an anomalous dependence on the collision energy. The inverse slopes of the spectra increase with energy in the low (AGS) and high (RHIC) energy domains, whereas they are constant in the intermediate (SPS) energy range. We argue that this anomaly is probably caused by a modification of the equation of state in the transition region between confined and deconfined matter. This observation may be considered as a new signal, in addition to the previously reported anomalies in the pion and strangeness production, of the onset of deconfinement located in the low SPS energy domain.