### Refine

#### Year of publication

#### Document Type

- Preprint (39)
- Article (6)
- Conference Proceeding (1)

#### Keywords

- Kollision (2)
- Zustandsgleichung (2)
- collision (2)
- equation of state (2)
- quark-gluon plasma (2)
- Cluster integrals (1)
- Drell-Yan ratio (1)
- Equation of state (1)
- Hadron (1)
- Hadron Gas Modell (1)

#### Institute

- Strangeness enhancement in heavy ion collisions - evidence for quark-gluon-matter? (1999)
- The centrality dependence of (multi-)strange hadron abundances is studied for Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The microscopic transport model UrQMD is used for this analysis. The predicted Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A reduction of the constituent quark masses to the current quark masses m_s \sim 230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances the hyperon yields to the experimentally observed high values. Similar results are obtained by an ad hoc overall increase of the color electric field strength (effective string tension of kappa=3 GeV/fm). The enhancement depends strongly on the kinematical cuts. The maximum enhancement is predicted around midrapidity. For Lambda's, strangeness suppression is predicted at projectile/target rapidity. For Omega's, the predicted enhancement can be as large as one order of magnitude. Comparisons of Pb-Pb data to proton induced asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry in the various rapidity distributions of the different (strange) particle species. In p-Pb collisions, strangeness is locally (in rapidity) not conserved. The present comparison to the data of the WA97 and NA49 collaborations clearly supports the suggestion that conventional (free) hadronic scenarios are unable to describe the observed high (anti-)hyperon yields in central collisions. The doubling of the strangeness to nonstrange suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a phase of nearly massless particles.

- Dynamical equilibration in strongly-interacting parton-hadron matter (2011)
- We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential) and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa) occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP) are addressed and discussed.

- Phase transition in hot pion matter (2000)
- The equation of state for the pion gas is analyzed within the third virial approximation. The second virial coeffcient is found from the pi pi -scattering data, while the third one is considered as a free parameter. The proposed model leads to a first-order phase transition from the pion gas to a more dense phase at the temperature Tpt < 136 MeV. Due to relatively low temperature this phase transition cannot be related to the deconfinement. This suggests that a new phase of hadron matter hot pion liquid may exist.

- Second cluster integral and excluded volume effects for the pion gas (2000)
- The quantum mechanical formula for Mayer s second cluster integral for the gas of relativistic particles with hard-core interaction is derived. The proper pion volume calculated with quantum mechanical formula is found to be an order of magnitude larger than its classical evaluation. The second cluster integral for the pion gas is calculated in quantum mechanical approach with account for both attractive and hard-core repulsive interactions. It is shown that, in the second cluster approximation, the repulsive -interactions as well as the finite width of resonances give important but almost canceling contributions. In contrast, an appreciable deviation from the ideal gas of pions and pion resonances is observed beyond the second clus- ter approximation in the framework of the Van der Waals excluded-volume model.

- The high E(T) drop of J / psi to Drell-Yan ratio from the statistical c anti-c coalescence model (2002)
- The dependence of the J/psi yield on the transverse energy ET in heavy ion collisions is considered within the statistical c¯c coalescence model. The model fits the NA50 data for Pb+Pb collisions at the CERN SPS even in the high-ET region (ET >< 100 GeV). Here ET -fluctuations and ET -losses in the dimuon event sample naturally create the celebrated drop in the J/psi to Drell-Yan ratio.

- Charm coalescence at relativistic energies (2003)
- The J/psi yield at midrapidity at the top RHIC (relativistic heavy ion collider) energy is calculated within the statistical coalescence model, which assumes charmonium formation at the late stage of the reaction from the charm quarks and antiquarks created earlier in hard parton collisions. The results are compared to the new PHENIX data and to predictions of the standard models, which assume formation of charmonia exclusively at the initial stage of the reaction and their subsequent suppression. Two versions of the suppression scenario are considered. One of them assumes gradual charmonium suppression by comovers, while the other one supposes that the suppression sets in abruptly due to quark-gluon plasma formation. Surprisingly, both versions give very similar results. In contrast, the statistical coalescence model predicts a few times larger J/psi yield in the most central collisions.

- Statistical coalescence model analysis of J / psi production in Pb + Pb collisions at 158 A GeV (2001)
- Production of J/psi mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experi- mental data of the NA50 Collaboration for Pb+Pb collisions at 158 A·GeV in a wide centrality range, including the so called anomalous suppression domain. The model description of the J/ psi data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.

- Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches (2005)
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k

- Fluctuations and correlations from microscopic transport theory (2009)
- The multiplicity fluctuations in A+A collisions at SPS and RHIC energies are studied within the HSD transport approach. We find a dominant role of the fluctuations in the nucleon participant number for the final fluctuations. In order to extract physical fluctuations one should decrease the fluctuations in the participants number. This can be done considering very central collisions. The system size dependence of the multiplicity fluctuations in central A+A collisions at the SPS energy range – obtained in the HSD and UrQMD transport models – is presented. The results can be used as a ‘background’ for experimental measurements of fluctuations as a signal of the critical point. Event-by-event fluctuations of the K/p , K/p and p/p ratios in A+A collisions are also studied. Event-by-event fluctuations of the kaon to pion number ratio in nucleus-nucleus collisions are studied for SPS and RHIC energies. We find that the HSD model can qualitatively reproduce the measured excitation function for the K/p ratio fluctuations in central Au+Au (or Pb+Pb) collisions from low SPS up to top RHIC energies. The forward-backward correlation coefficient measured by the STAR Collaboration in Au+Au collisions at RHIC is also studied. We discuss the effects of initial collision geometry and centrality bin definition on correlations in nucleus-nucleus collisions. We argue that a study of the dependence of correlations on the centrality bin definition as well as the bin size may distinguish between these ‘trivial’ correlations and correlations arising from ‘new physics’. 5th International Workshop on Critical Point and Onset of Deconfinement - CPOD 2009, June 08 - 12 2009 Brookhaven National Laboratory, Long Island, New York, USA

- Baryon number and electric charge fluctuations in Pb+Pb collisions at SPS energies (2006)
- Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrate that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.