Refine
Keywords
- Ab initio calculations (1)
- Catalysis (1)
- Covid19-nmr (1)
- DNA conjugate (1)
- DNA recognition (1)
- NMR spectroscopy (1)
- Post-Hartree-Fock methods (1)
- RNA (1)
- RNA cleavage (1)
- SARS-CoV-2 (1)
- RNA hydrolysis by heterocyclic amidines and guanidines: parameters affecting reactivity (2021)
- 2-Aminobenzimidazole 10, although a weak catalyst in the monomeric state, is a successful building block for effective artificial ribonucleases. In an effort to identify new building blocks with improved catalytic potential, RNA cleavage by a variety of heterocyclic amidines and guanidines has been studied. In addition to pKa values and steric effects, the energy difference between tautomeric forms seems to be another important parameter for catalysis. This information is available from quantum chemical calculations on higher levels, but semiempirical methods are sufficient to get a first estimate. According to this assumption, imidazoimidazol 18, characterized by isoenergetic tautomeric forms, is superior to 2-aminoimidazol 6, the best candidate among the simple compounds. By far the largest effects are seen with 2-aminoperimidine 24, which rapidly cleaves RNA even in the micromolar concentration range. The impressive reactivity, however, is related to a tendency of compound 24 to form polycationic aggregates which are the actual catalysts.
- Redirection of the transcription factor SP1 to AT rich binding sites by a synthetic adaptor molecule (2021)
- The ubiquitous transcription factor SP1 binds to a GC rich consensus sequence. Here we describe an adaptor molecule that mediates binding of SP1 to a non-cognate DNA site rich in AT. The adaptor is comprised of a Dervan-type hairpin polyamide with high affinity to an AT rich hexamer duplex. It also carries a 27mer DNA that contains the SP1 consensus sequence. The synthesis and purification of the polyamide-DNA conjugate is reported. Pulldown experiments and western blot analysis demonstrate adaptor mediated binding of SP1 to the hexamer duplex TTGTTA.
- RNA hydrolysis by heterocyclic amidines and guanidines: parameters affecting reactivity (2021)
- 2-Aminobenzimidazole 10, although a weak catalyst in the monomeric state, is a successful building block for effective artificial ribonucleases. In an effort to identify new building blocks with improved catalytic potential, RNA cleavage by a variety of heterocyclic amidines and guanidines has been studied. In addition to pKa values and steric effects, the energy difference between tautomeric forms seems to be another important parameter for catalysis. This information is available from quantum chemical calculations on higher levels, but semiempirical methods are sufficient to get a first estimate. According to this assumption, imidazoimidazol 18, characterized by isoenergetic tautomeric forms, is superior to 2-aminoimidazol 6, the best candidate among the simple compounds. By far the largest effects are seen with 2-aminoperimidine 24, which rapidly cleaves RNA even in the micromolar concentration range. The impressive reactivity, however, is related to a tendency of compound 24 to form polycationic aggregates which are the actual catalysts.
- Genetic code expansion facilitates position‐selective labeling of rna for biophysical studies (2019)
- Nature relies on reading and synthesizing the genetic code with high fidelity. Nucleic acid building blocks that are orthogonal to the canonical A‐T and G‐C base‐pairs are therefore uniquely suitable to facilitate position‐specific labeling of nucleic acids. Here, we employ the orthogonal kappa‐xanthosine‐base‐pair for in vitro transcription of labeled RNA. We devised an improved synthetic route to obtain the phosphoramidite of the deoxy‐version of the kappa nucleoside in solid phase synthesis. From this DNA template, we demonstrate the reliable incorporation of xanthosine during in vitro transcription. Using NMR spectroscopy, we show that xanthosine introduces only minor structural changes in an RNA helix. We furthermore synthesized a clickable 7‐deaza‐xanthosine, which allows to site‐specifically modify transcribed RNA molecules with fluorophores or other labels.
- Exploring the druggability of conserved RNA regulatory elements in the SARS-CoV-2 genome (2021)
- SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.