Refine
Keywords
- Neuroinflammation (2)
- sphingolipids (2)
- AMP-activated kinase (1)
- Autoimmune encephalomyelitis (1)
- Biomarkers (1)
- Brain injury (1)
- CYP1A1 (1)
- Cancer (1)
- DNA damage (1)
- Entorhinal cortex lesion (1)
- Phosphorylation of murine SAMHD1 regulates its antiretroviral activity (2015)
- BACKGROUND: Human SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies. RESULTS: We found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA. CONCLUSION: Our findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.
- Persistence of HCV in acutely-infected patients depletes C24-ceramide and upregulates sphingosine and sphinganine serum levels (2016)
- Hepatitis C virus (HCV) substantially affects lipid metabolism, and remodeling of sphingolipids appears to be essential for HCV persistence in vitro. The aim of the current study is the evaluation of serum sphingolipid variations during acute HCV infection. We enrolled prospectively 60 consecutive patients with acute HCV infection, most of them already infected with human immunodeficiency virus (HIV), and serum was collected at the time of diagnosis and longitudinally over a six-month period until initiation of antiviral therapy or confirmed spontaneous clearance. Quantification of serum sphingolipids was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Spontaneous clearance was observed in 11 out of 60 patients (18.3%), a sustained viral response (SVR) in 43 out of 45 patients (95.5%) receiving an antiviral treatment after follow-up, whereas persistence of HCV occurred in six out of 60 patients (10%). C24-ceramide (C24-Cer)-levels increased at follow-up in patients with spontaneous HCV eradication (p < 0.01), as compared to baseline. Sphingosine and sphinganine values were significantly upregulated in patients unable to clear HCV over time compared to patients with spontaneous clearance of HCV infection on follow-up (p = 0.013 and 0.006, respectively). In summary, the persistence of HCV after acute infection induces a downregulation of C24Cer and a simultaneous elevation of serum sphingosine and sphinganine concentrations.
- Sphingosine-1-phosphate receptor inhibition prevents denervation-induced dendritic atrophy (2016)
- A hallmark of several major neurological diseases is neuronal cell death. In addition to this primary pathology, secondary injury is seen in connected brain regions in which neurons not directly affected by the disease are denervated. These transneuronal effects on the network contribute considerably to the clinical symptoms. Since denervated neurons are viable, they are attractive targets for intervention. Therefore, we studied the role of Sphingosine-1-phosphate (S1P)-receptor signaling, the target of Fingolimod (FTY720), in denervation-induced dendritic atrophy. The entorhinal denervation in vitro model was used to assess dendritic changes of denervated mouse dentate granule cells. Live-cell microscopy of GFP-expressing granule cells in organotypic entorhino-hippocampal slice cultures was employed to follow individual dendritic segments for up to 6 weeks after deafferentation. A set of slice cultures was treated with FTY720 or the S1P-receptor (S1PR) antagonist VPC23019. Lesion-induced changes in S1P (mass spectrometry) and S1PR-mRNA levels (laser microdissection and qPCR) were determined. Denervation caused profound changes in dendritic stability. Dendritic elongation and retraction events were markedly increased, resulting in a net reduction of total dendritic length (TDL) during the first 2 weeks after denervation, followed by a gradual recovery in TDL. These changes were accompanied by an increase in S1P and S1PR1- and S1PR3-mRNA levels, and were not observed in slice cultures treated with FTY720 or VPC23019. We conclude that inhibition of S1PR signaling prevents dendritic destabilization and denervation-induced dendrite loss. These results suggest a novel neuroprotective effect for pharmaceuticals targeting neural S1PR pathways.
- FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke (2013)
- Background: The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors. Methods: We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence. Results: FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue. Conclusion: Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors.
- Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice (2013)
- Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18:1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18:1, 9-and 13-HODE and HETEs.
- Serum autotaxin is a parameter for the severity of liver cirrhosis and overall survival in patients with liver cirrhosis : a prospective cohort study (2014)
- Background: Autotaxin (ATX) and its product lysophosphatidic acid (LPA) are considered to be involved in the development of liver fibrosis and elevated levels of serum ATX have been found in patients with hepatitis C virus associated liver fibrosis. However, the clinical role of systemic ATX in the stages of liver cirrhosis was unknown. Here we investigated the relation of ATX serum levels and severity of cirrhosis as well as prognosis of cirrhotic patients. Methods: Patients with liver cirrhosis were prospectively enrolled and followed until death, liver transplantation or last contact. Blood samples drawn at the day of inclusion in the study were assessed for ATX content by an enzyme-linked immunosorbent assay. ATX levels were correlated with the stage as well as complications of cirrhosis. The prognostic value of ATX was investigated by uni- and multivariate Cox regression analyses. LPA concentration was determined by liquid chromatography-tandem mass spectrometry. Results: 270 patients were enrolled. Subjects with liver cirrhosis showed elevated serum levels of ATX as compared to healthy subjects (0.814±0.42 mg/l vs. 0.258±0.40 mg/l, P<0.001). Serum ATX levels correlated with the Child-Pugh stage and the MELD (model of end stage liver disease) score and LPA levels (r = 0.493, P = 0.027). Patients with hepatic encephalopathy (P = 0.006), esophageal varices (P = 0.002) and portal hypertensive gastropathy (P = 0.008) had higher ATX levels than patients without these complications. Low ATX levels were a parameter independently associated with longer overall survival (hazard ratio 0.575, 95% confidence interval 0.365–0.905, P = 0.017). Conclusion: Serum ATX is an indicator for the severity of liver disease and the prognosis of cirrhotic patients.
- In vivo availability of pro-resolving lipid mediators in oxazolone induced dermal inflammation in the mouse (2015)
- The activation and infiltration of polymorphonuclear neutrophils (PMN) are critical key steps in inflammation. PMN-mediated inflammation is limited by anti-inflammatory and pro-resolving mechanisms, including specialized pro-resolving lipid mediators (SPM). We examined the effects of 15-epi-LXA4 on inflammation and the biosynthesis of pro-inflammatory mediators, such as prostaglandins, leukotriene B4 and various hydroxyeicosatetraenoic acids and SPM, in an oxazolone (OXA)-induced hypersensitivity model for dermal inflammation. 15-epi-LXA4 (100 μM, 5 μL subcutaneously injected) significantly (P < 0.05) reduced inflammation in skin, 24 hours after the OXA challenge, as compared to skin treated with vehicle. No significant influence on the biosynthesis of prostaglandins or leukotriene B4 was observed, whereas the level of 15S-hydroxy-eicosatetraenoic acid was significantly (P < 0.05) lower in the skin areas treated with 15-epi-LXA4. In spite of the use of a fully validated analytical procedure, no SPM were detected in the biological samples. To investigate the reason for the lack of analytical signal, we tried to mimic the production of SPM (lipoxins, resolvins, maresin and protectin) by injecting them subcutaneously into the skin of mice and studying the in vivo availability and distribution of the compounds. All analytes showed very little lateral distribution in skin tissue and their levels were markedly decreased (> 95%) 2 hours after injection. However, docosahexaenoic acid derivatives were biologically more stable than SPM derived from arachidonic acid or eicosapentaenoic acid.
- Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP (2015)
- Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases.
- Loss of HIF-1α in macrophages attenuates AhR/ARNT-mediated tumorigenesis in a PAH-driven tumor model (2016)
- Activation of hypoxia-inducible factor (HIF) and macrophage infiltration of solid tumors independently promote tumor progression. As little is known how myeloid HIF affects tumor development, we injected the polycyclic aromatic hydrocarbon (PAH) and procarcinogen 3-methylcholanthrene (MCA; 100 μg/100 μl) subcutaneously into myeloid-specific Hif-1α and Hif-2α knockout mice (C57BL/6J) to induce fibrosarcomas (n = 16). Deletion of Hif-1α but not Hif-2α in macrophages diminished tumor outgrowth in the MCA-model. While analysis of the tumor initiation phase showed comparable inflammation after MCA-injection, metabolism of MCA was impaired in the absence of Hif-1α. An ex vivo macrophage/fibroblast coculture recapitulated reduced DNA damage after MCA-stimulation in fibroblasts of cocultures with Hif-1α LysM-/- macrophages compared to wild type macrophages. A loss of myeloid Hif-1α decreased RNA levels of arylhydrocarbon receptor (AhR)/arylhydrocarbon receptor nuclear translocator (ARNT) targets such as Cyp1a1 because of reduced Arnt but unchanged Ahr expression. Cocultures using Hif-1α LysM-/- macrophages stimulated with the carcinogen 7,12-dimethylbenz[a]anthracene (DMBA; 2 μg/ml) also attenuated a DNA damage response in fibroblasts, while the DNA damage-inducing metabolite DMBA-trans-3,4-dihydrodiol remained effective in the absence of Hif-1α. In chemical-induced carcinogenesis, HIF-1α in macrophages maintains ARNT expression to facilitate PAH-biotransformation. This implies a metabolic activation of PAHs in stromal cells, i.e. myeloid-derived cells, to be crucial for tumor initiation.
- Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis (2017)
- Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2 -/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach.