Refine
Year of publication
- 2018 (2) (remove)
Keywords
- Adenylyl cyclase (1)
- Cirrhosis (1)
- Etiology (1)
- Hepatocellular carcinoma (1)
- Infectious disease epidemiology (1)
- Liver diseases (1)
- MRP4 (1)
- Membrane staining (1)
- Negative staining (1)
- PKA (1)
Institute
- Medizin (2) (remove)
- Activation of adenylyl cyclase causes stimulation of adenosine receptors (2018)
- Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs) is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA) and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2) inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors). In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.
- Circulating hypoxia marker carbonic anhydrase IX (CA9) in patients with hepatocellular carcinoma and patients with cirrhosis (2018)
- Background and aims: Expression of carbonic anhydrase IX (CA9), an enzyme expressed in response to hypoxia, acidosis and oncogenic alterations, is reported to be a prognostic factor in HCC patients. Here we evaluated serum CA9 levels in HCC and cirrhosis patients. Methods: HCC and cirrhosis patients were prospectively recruited and CA9 levels were determined. CA9 levels were compared to stages of cirrhosis and HCC stages. The association of the CA9 levels and overall survival (OS) was assessed. Furthermore, immunohistochemical CA9 expression in HCC and cirrhosis was evaluated. Results: 215 patients with HCC were included. The median serum CA9 concentration in patients with HCC was 370 pg/ml and significantly higher than in a healthy cohort. Patients with advanced cancer stages (BCLC and ALBI score) had hid significant higher levels of CA9 in the serum. HCC patients with high serum CA9 concentrations (>400 pg/ml) had an increased mortality risk (hazard ratio (HR) 1.690, 95% confidence interval (CI) 1.017–2.809, P = 0.043). Serum CA9 concentration in cirrhotic patients did not differ significantly from HCC patients. Higher CA9 levels in cirrhotic patients correlated with portal hypertension and esophageal varices. Patients with ethanol induced cirrhosis had the highest CA9 levels in both cohorts. Levels of CA9 did not correlate with immunohistochemical expression. Conclusions: We conclude that a high CA9 level is a possible prognostic indicator for a poor outcome in HCC patients. The high CA9 levels are probably mainly associated with portal hypertension. Ductular reactions might be a possible source of serum CA9.