Refine
Keywords
- A hydrophilic gel matrix for single-molecule super-resolution microscopy (2013)
- Background: Novel microscopic techniques which bypass the resolution limit in light microscopy are becoming routinely established today. The higher spatial resolution of super-resolution microscopy techniques demands for precise correction of drift, spectral and spatial offset of images recorded at different axial planes. Methods: We employ a hydrophilic gel matrix for super-resolution microscopy of cellular structures. The matrix allows distributing fiducial markers in 3D, and using these for drift correction and multi-channel registration. We demonstrate single-molecule super-resolution microscopy with photoswitchable fluorophores at different axial planes. We calculate a correction matrix for each spectral channel, correct for drift, spectral and spatial offset in 3D. Results and discussion: We demonstrate single-molecule super-resolution microscopy with photoswitchable fluorophores in a hydrophilic gel matrix. We distribute multi-color fiducial markers in the gel matrix and correct for drift and register multiple imaging channels. We perform two-color super-resolution imaging of click-labeled DNA and histone H2B in different axial planes, and demonstrate the quality of drift correction and channel registration quantitatively. This approach delivers robust microscopic data which is a prerequisite for data interpretation.