Refine
Keywords
- D-Dbar (1)
- heavy-flavor quarks (1)
- high-energy nuclear collisions (1)
- nuclear collisions (1)
- quark-gluon plasma (1)
- thermalization (1)
Institute
- DD correlations as a sensitive probe for thermalization in high-energy nuclear collisions (2006)
- We propose to measure correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions, shown on the example of azimuthal correlations of D-Dbar pairs. We show that hadronic interactions at the late stage can not disturb these correlations significantly. Thus, a decrease or the complete absence of these initial correlations indicates frequent interactions of heavy-flavor quarks in the partonic stage. Therefore, early thermalization of light quarks is likely to be reached. PACS numbers: 25.75.-q
- DD correlations as a sensitive probe for thermalization in high-energy nuclear collisions (2006)
- We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.
- Antishadowing effect on charmonium production at a fixed-target experiment using lhc beams (2015)
- We investigate charmonium production in Pb + Pb collisions at LHC beam energy Elab=2.76A TeV at fixed-target experiment (√sNN = 72 GeV). In the frame of a transport approach including cold and hot nuclear matter effects on charmonium evolution, we focus on the antishadowing effect on the nuclear modification factors RAA and rAA for the J/ψ yield and transverse momentum. The yield is more suppressed at less forward rapidity (ylab ≃ 2) than that at very forward rapidity (ylab ≃ 4) due to the shadowing and antishadowing in different rapidity bins.
- Thermal charm and charmonium production in quark gluon plasma (2016)
- We study the effect of thermal charm production on charmonium regeneration in high energy nuclear collisions. By solving the kinetic equations for charm quark and charmonium distributions in Pb+Pb collisions, we calculate the global and differential nuclear modification factors RAA(Npart) and RAA(pt) for J/ψ s. Due to the thermal charm production in hot medium, the charmonium production source changes from the initially created charm quarks at SPS, RHIC and LHC to the thermally produced charm quarks at Future Circular Collider (FCC), and the J/ψ suppression (RAA<1) observed so far will be replaced by a strong enhancement (RAA>1) at FCC at low transverse momentum.