Refine
Keywords
- ACLF (1)
- HVPG (1)
- NAFLD (1)
- NASH (1)
- Roux-en-Y gastric bypass (1)
- acute decompensation (1)
- cirrhosis (1)
- intestinal manipulation (1)
- mini gastric bypass (1)
- one anastomosis gastric bypass (1)
- Baseline presence of NAFLD predicts weight loss after gastric bypass surgery for morbid obesity (2020)
- Background. Bariatric surgery is a widely used treatment for morbid obesity. Prediction of postoperative weight loss currently relies on prediction models, which mostly overestimate patients’ weight loss. Data about the influence of Non-alcoholic fatty liver disease (NAFLD) on early postoperative weight loss are scarce. Methods. This prospective, single-center cohort study included 143 patients receiving laparoscopic gastric bypass surgery (One Anastomosis-Mini Gastric Bypass (OAGB-MGB) or Roux-en-Y Gastric Bypass (RYGB)). Liver biopsies were acquired at surgery. NAFLD activity score (NAS) assigned patients to “No NAFLD”, “NAFL” or “NASH”. Follow up data were collected at 3, 6 and 12 months. Results. In total, 49.7% of patients had NASH, while 41.3% had NAFL. Compared with the No NAFLD group, NAFL and NASH showed higher body-mass-index (BMI) at follow-up (6 months: 31.0 kg/m2 vs. 36.8 kg/m2 and 36.1 kg/m2, 12 months: 27.0 kg/m2 vs. 34.4 and 32.8 kg/m2) and lower percentage of total body weight loss (%TBWL): (6 months: 27.1% vs. 23.3% and 24.4%; 12 months: 38.5% vs. 30.1 and 32.6%). Linear regression of NAS points significantly predicts percentage of excessive weight loss (%EWL) after 6 months (Cologne-weight-loss-prediction-score). Conclusions. Histopathological presence of NAFLD might lead to inferior postoperative weight reduction after gastric bypass surgery. The mechanisms underlying this observation should be further studied.
- The development and outcome of acute-on-chronic liver failure after surgical interventions (2019)
- Acute‐on‐chronic liver failure (ACLF) is a syndrome with high short‐term mortality. Precipitating events, including hemorrhage and infections, contribute to ACLF development, but the role of surgery remains unknown. We investigated the development of ACLF in patients with cirrhosis undergoing surgery. In total, 369 patients with cirrhosis were included in the study. The clinical and laboratory data were collected prior to and on days 1‐2, 3‐8, and 9‐28, and at 3 and 12 months after surgery. Surgery type was classified as limited or extensive, as well as liver and nonliver surgery. A total of 39 patients had baseline ACLF. Surgery was performed during acute decompensation in 35% of the rest of the 330 patients, and 81 (24.5%) developed ACLF within 28 days after surgery. Surrogate markers of systemic inflammation were similar in patients who developed ACLF or not. Age, sex, serum sodium, baseline bacterial infection, and abdominal nonliver surgery were independent predictors for the development of ACLF after surgery. Patients who developed ACLF within 28 days after surgery had a higher mortality at 3, 6, and 12 months. Survival did not differ between patients with ACLF at surgery and those developing ACLF after surgery. Development of ACLF within 28 days after surgery and elevated alkaline phosphatase and international normalized ratio were independent predictors of 90‐day mortality. Independent predictors of 1‐year all‐cause mortality were alkaline phosphatase, Model for End‐Stage Liver Disease score, and preoperative hepatic encephalopathy, whereas nonliver surgery was associated with improved survival. ACLF frequently develops in patients with cirrhosis undergoing surgery, especially in those with active bacterial infection, lower serum sodium, and kidney or coagulation dysfunction. Prognoses of ACLF both at and after surgery are similarly poor. Patients with cirrhosis should be carefully managed perioperatively.
- Extrahepatic surgery in cirrhosis significantly increases portal pressure in preclinical animal models (2021)
- Background: Liver cirrhosis is a relevant comorbidity with increasing prevalence. Postoperative decompensation and development of complications in patients with cirrhosis remains a frequent clinical problem. Surgery has been discussed as a precipitating event for decompensation and complications of cirrhosis, but the underlying pathomechanisms are still obscure. The aim of this study was to analyze the role of abdominal extrahepatic surgery in cirrhosis on portal pressure and fibrosis in a preclinical model. Methods: Compensated liver cirrhosis was induced using tetrachlormethane (CCL4) inhalation and bile duct ligation (BDL) models in rats, non-cirrhotic portal hypertension by partial portal vein ligation (PPVL). Intestinal manipulation (IM) as a model of extrahepatic abdominal surgery was performed. 2 and 7 days after IM, portal pressure was measured in-vivo. Hydroxyproline measurements, Sirius Red staining and qPCR measurements of the liver were performed for evaluation of fibrosis development and hepatic inflammation. Laboratory parameters of liver function in serum were analyzed. Results: Portal pressure was significantly elevated 2 and 7 days after IM in both models of cirrhosis. In the non-cirrhotic model the trend was the same, while not statistically significant. In both cirrhotic models, IM shows strong effects of decompensation, with significant weight loss, elevation of liver enzymes and hypoalbuminemia. 7 days after IM in the BDL group, Sirius red staining and hydroxyproline levels showed significant progression of fibrosis and significantly elevated mRNA levels of hepatic inflammation compared to the respective control group. A progression of fibrosis was not observed in the CCL4 model. Conclusion: In animal models of cirrhosis with continuous liver injury (BDL), IM increases portal pressure, and development of fibrosis. Perioperative portal pressure and hence inflammation processes may be therapeutic targets to prevent post-operative decompensation in cirrhosis.