### Refine

#### Document Type

- Article (2) (remove)

#### Keywords

- Bell theorem (1)
- Tevatron (1)
- Tevatron (1)
- causality (1)
- free will (1)
- quantum measurement (1)
- quantum mechanics (1)
- quasi-stable black holes (1)
- quasistabile schwarze Löcher (1)
- superdeterminism (1)

#### Institute

- Physik (2) (remove)

- Tevatron - probing TeV-scale gravity today (2002)
- The production of black holes at Tevatron and LHC in spacetimes with compactified space-like large extra dimensions is studied. Either black holes can already be observed in ¯ pp collisions at s = 1.8 TeV or the fundamental gravity scale has to be above 1.4 TeV. At LHC the creation of a large number of quasi-stable black holes is predicted, with lifetimes beyond several hundred fm/c. A cut-off in the high-PT jet cross section is shown to be a unique signature of black hole production. This signal is compared to the jet plus missing energy signature due to graviton production in the final state as proposed by the ATLAS collaboration.

- Rethinking superdeterminism (2020)
- Quantum mechanics has irked physicists ever since its conception more than 100 years ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic, quantum mechanics has one serious shortcoming: it lacks a physical description of the measurement process. This “measurement problem” indicates that quantum mechanics is at least an incomplete theory—good as far as it goes, but missing a piece—or, more radically, is in need of complete overhaul. Here we describe an approach which may provide this sought-for completion or replacement: Superdeterminism. A superdeterministic theory is one which violates the assumption of Statistical Independence (that distributions of hidden variables are independent of measurement settings). Intuition suggests that Statistical Independence is an essential ingredient of any theory of science (never mind physics), and for this reason Superdeterminism is typically discarded swiftly in any discussion of quantum foundations. The purpose of this paper is to explain why the existing objections to Superdeterminism are based on experience with classical physics and linear systems, but that this experience misleads us. Superdeterminism is a promising approach not only to solve the measurement problem, but also to understand the apparent non-locality of quantum physics. Most importantly, we will discuss how it may be possible to test this hypothesis in an (almost) model independent way.