### Refine

#### Document Type

- Preprint (11)
- Article (2)
- Doctoral Thesis (1)

#### Keywords

- Tevatron (2)
- black holes (2)
- große Extradimensionen (2)
- large extra dimensions (2)
- Bell theorem (1)
- Elektron (1)
- Gyromagnetic Moment (1)
- Tevatron (1)
- black hole (1)
- causality (1)

#### Institute

- Physik (14) (remove)

- Quasi-stable black holes at LHC (2001)
- We address the production of black holes at LHC and their time evolution in space times with compactified space like extra dimensions. It is shown that black holes with life times of several hundred fm/c can be produced at LHC. The possibility of quasi-stable remnants is discussed.

- Trapping black hole remnants (2005)
- Large extra dimensions lower the Planck scale to values soon accessible. The production of TeV mass black holes at the LHC is one of the most exciting predictions. However, the final phases of the black hole's evaporation are still unknown and there are strong indications that a black hole remnant can be left. Since a certain fraction of such objects would be electrically charged, we argue that they can be trapped. In this paper, we examine the occurrence of such charged black hole remnants. These trapped remnants are of high interest, as they could be used to closely investigate the evaporation characteristics. Due to the absence of background from the collision region and the controlled initial state, the signal would be very clear. This would allow to extract information about the late stages of the evaporation process with high precision.

- Rethinking superdeterminism (2020)
- Quantum mechanics has irked physicists ever since its conception more than 100 years ago. While some of the misgivings, such as it being unintuitive, are merely aesthetic, quantum mechanics has one serious shortcoming: it lacks a physical description of the measurement process. This “measurement problem” indicates that quantum mechanics is at least an incomplete theory—good as far as it goes, but missing a piece—or, more radically, is in need of complete overhaul. Here we describe an approach which may provide this sought-for completion or replacement: Superdeterminism. A superdeterministic theory is one which violates the assumption of Statistical Independence (that distributions of hidden variables are independent of measurement settings). Intuition suggests that Statistical Independence is an essential ingredient of any theory of science (never mind physics), and for this reason Superdeterminism is typically discarded swiftly in any discussion of quantum foundations. The purpose of this paper is to explain why the existing objections to Superdeterminism are based on experience with classical physics and linear systems, but that this experience misleads us. Superdeterminism is a promising approach not only to solve the measurement problem, but also to understand the apparent non-locality of quantum physics. Most importantly, we will discuss how it may be possible to test this hypothesis in an (almost) model independent way.

- Black hole remnants at the LHC (2005)
- Within the scenario of large extra dimensions, the Planck scale is lowered to values soon accessible. Among the predicted effects, the production of TeV mass black holes at the LHC is one of the most exciting possibilities. Though the final phases of the black hole’s evaporation are still unknown, the formation of a black hole remnant is a theoretically well motivated expectation. We analyze the observables emerging from a black hole evaporation with a remnant instead of a final decay. We show that the formation of a black hole remnant yields a signature which differs substantially from a final decay. We find the total transverse momentum of the black hole event to be significantly dominated by the presence of a remnant mass providing a strong experimental signature for black hole remnant formation.