### Refine

#### Document Type

- Article (9)
- Conference Proceeding (1)

#### Keywords

- 3D modeling (1)
- Biophysical models (1)
- Calcium signalling (1)
- Calcium waves (1)
- Endoplasmic reticulum (1)
- Numerical simulation (1)
- PDEs (1)
- Ryanodine receptors (1)
- Structure-function interplay (1)
- adaption (1)

#### Institute

- Mathematical modeling of the Drosophila neuromuscular junction (2009)
- Poster presentation: An important challenge in neuroscience is understanding how networks of neurons go about processing information. Synapses are thought to play an essential role in cellular information processing however quantitative and mathematical models of the underlying physiologic processes that occur at synaptic active zones are lacking. We are generating mathematical models of synaptic vesicle dynamics at a well-characterized model synapse, the Drosophila larval neuromuscular junction. This synapse's simplicity, accessibility to various electrophysiological recording and imaging techniques, and the genetic malleability intrinsic to Drosophila system make it ideal for computational and mathematical studies. We have employed a reductionist approach and started by modeling single presynaptic boutons. Synaptic vesicles can be divided into different pools; however, a quantitative understanding of their dynamics at the Drosophila neuromuscular junction is lacking [4]. We performed biologically realistic simulations of high and low release probability boutons [3] using partial differential equations (PDE) taking into account not only the evolution in time but also the spatial structure in two dimensions (the extension to three dimensions will be implemented soon). PDEs are solved using UG, a program library for the calculation of multi-dimensional PDEs solved using a finite volume approach and implicit time stepping methods leading to extended linear equation systems be solvedwith multi-grid methods [3,4]. Numerical calculations are done on multi-processor computers for fast calculations using different parameters in order to asses the biological feasibility of different models. In preliminary simulations, we modeled vesicle dynamics as a diffusion process describing exocytosis as Neumann streams at synaptic active zones. The initial results obtained with these models are consistent with experimental data. However, this should be regarded as a work in progress. Further refinements will be implemented, including simulations using morphologically realistic geometries which were generated from confocal scans of the neuromuscular junction using NeuRA (a Neuron Reconstruction Algorithm). Other parameters such as glutamate diffusion and reuptake dynamics, as well as postsynaptic receptor kinetics will be incorporated as well.

- Synaptic bouton sizes are tuned to best fit their physiological performances : poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011, Stockholm, Sweden, 23 - 28 July 2011 (2011)
- Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain the rather astonishing motor patterns presented here which we observed within in vivo recordings which underlie peristaltic contractions at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva. To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po),the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues.

- Long-term potentiation through calcium-mediated N-Cadherin interaction is tightly controlled by the three-dimensional architecture of the synapse (2013)
- Poster presentation: Twenty Second Annual Computational Neuroscience Meeting: CNS*2013. Paris, France. 13-18 July 2013. The synaptic cleft is an extracellular domain that is capable of relaying a presynaptically received electrical signal by diffusive neurotransmitters to the postsynaptic membrane. The cleft is trans-synaptically bridged by ring-like shaped clusters of pre- and postsynaptically localized calcium-dependent adhesion proteins of the N-Cadherin type and is possibly the smallest intercircuit in nervous systems [1]. The strength of association between the pre- and postsynaptic membranes can account for synaptic plasticity such as long-term potentiation [2]. Through neuronal activity the intra- and extracellular calcium levels are modulated through calcium exchangers embedded in the pre- and postsynaptic membrane. Variations of the concentration of cleft calcium induces changes in the N-Cadherin-zipper, that in synaptic resting states is rigid and tightly connects the pre- and postsynaptic domain. During synaptic activity calcium concentrations are hypothesized to drop below critical thresholds which leads to loosening of the N-Cadherin connections and subsequently "unzips" the Cadherin-mediated connection. These processes may result in changes in synaptic strength [2]. In order to investigate the calcium-mediated N-Cadherin dynamics at the synaptic cleft, we developed a three-dimensional model including the cleft morphology and all prominent calcium exchangers and corresponding density distributions [3-6]. The necessity for a fully three-dimensional model becomes apparent, when investigating the effects of the spatial architecture of the synapse [7], [8]. Our data show, that the localization of calcium channels with respect to the N-Cadherin ring has substantial effects on the time-scales on which the Cadherin-zipper switches between states, ranging from seconds to minutes. This will have significant effects on synaptic signaling. Furthermore we see, that high-frequency action potential firing can only be relayed to the Calcium/N-Cadherin-system at a synapse under precise spatial synaptic reorganization.

- What is required for neuronal calcium waves? a numerical parameter study (2018)
- Neuronal calcium signals propagating by simple diffusion and reaction with mobile and stationary buffers are limited to cellular microdomains. The distance intracellular calcium signals can travel may be significantly increased by means of calcium-induced calcium release from internal calcium stores, notably the endoplasmic reticulum. The organelle, which can be thought of as a cell-within-a-cell, is able to sequester large amounts of cytosolic calcium ions via SERCA pumps and selectively release them into the cytosol through ryanodine receptor channels leading to the formation of calcium waves. In this study, we set out to investigate the basic properties of such dendritic calcium waves and how they depend on the three parameters dendrite radius, ER radius and ryanodine receptor density in the endoplasmic membrane. We demonstrate that there are stable and abortive regimes for calcium waves, depending on the above morphological and physiological parameters. In stable regimes, calcium waves can travel across long dendritic distances, similar to electrical action potentials. We further observe that abortive regimes exist, which could be relevant for spike-timing dependent plasticity, as travel distances and wave velocities vary with changing intracellular architecture. For some of these regimes, analytic functions could be derived that fit the simulation data. In parameter spaces, that are non-trivially influenced by the three-dimensional calcium concentration profile, we were not able to derive such a functional description, demonstrating the mathematical requirement to model and simulate biochemical signaling in three-dimensional space.

- Synaptic boutons sizes are tuned to best fit their physiological performances (2013)
- To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain as well the rather astonishing motor patterns which we observed within in vivo recordings which underlie peristaltic contractionsas well as the shape of the EPSPs at different forms of long-term stimulation, presented both here, at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva (c.f. Figure 1). To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po), the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. We can present astonishing similar results of experimental and simulation data which could be gained in particular without any data fitting, however based only on biophysical values which could be taken from different experimental results. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues.

- Spine-to-dendrite calcium modeling discloses relevance for precise positioning of ryanodine receptor-containing spine endoplasmic reticulum (2018)
- The endoplasmic reticulum (ER) forms a complex endomembrane network that reaches into the cellular compartments of a neuron, including dendritic spines. Recent work discloses that the spine ER is a dynamic structure that enters and leaves spines. While evidence exists that ER Ca2+ release is involved in synaptic plasticity, the role of spine ER morphology remains unknown. Combining a new 3D spine generator with 3D Ca2+ modeling, we addressed the relevance of ER positioning on spine-to-dendrite Ca2+ signaling. Our simulations, which account for Ca2+ exchange on the plasma membrane and ER, show that spine ER needs to be present in distinct morphological conformations in order to overcome a barrier between the spine and dendritic shaft. We demonstrate that RyR-carrying spine ER promotes spine-to-dendrite Ca2+ signals in a position-dependent manner. Our simulations indicate that RyR-carrying ER can initiate time-delayed Ca2+ reverberation, depending on the precise position of the spine ER. Upon spine growth, structural reorganization of the ER restores spine-to-dendrite Ca2+ communication, while maintaining aspects of Ca2+ homeostasis in the spine head. Our work emphasizes the relevance of precise positioning of RyR-containing spine ER in regulating the strength and timing of spine Ca2+ signaling, which could play an important role in tuning spine-to-dendrite Ca2+ communication and homeostasis.

- Cellular and nuclear morphology…and calcium signaling: revealing the interplay between structure and function (2012)
- Poster presentation: Calcium plays a pivotal role in relaying electrical signals of the cell to subcellular compartments, such as the nucleus. Since this one ion type is used by the cell for many processes a neuron needs to establish finely tuned calcium pathways in order to be able to differentiate multiple tasks, [1-3]. While it is known that neurons can actively change their shape upon neuronal activity, [4-7], we here present novel findings of activity-regulated nuclear morphology, [8,9]. With the help of an experimental and computational modeling approach, we show that hippocampal neurons can change the previously spherical shape of their nuclei to complex and infolded morphologies. This morphology regulation is demonstrated to be regulated by NMDA-receptor gated calcium, while synaptic and extra-synaptic NMDA-receptors elicit opposing effects on nuclear morphology, [8]. The structural alterations of the cell nucleus have significant effects on nuclear calcium dynamics. Compartmentalization of the nucleus, due to membrane infoldings, changes calcium frequencies, amplitudes and spatial distributions, [8,10]. Since these parameters have been shown to control downstream events towards gene transcription, [11,12], the results elucidate the cellular control of nuclear function with the help of morphology modulation. With respect to processes downstream of calcium, we show that histone H3 phosphorylation is closely linked to nuclear morphology. Investigating the nuclear morphologies of hippocampal neurons, two major classes were identified [9,10]. One class contains non-infolded nuclei that have the function of calcium signal integrators, while the other class contains highly infolded nuclei, which function as frequency detectors of nuclear calcium, [10]. Extending this interdisciplinary approach of investigating structure/function relationships in neurons, the effects of cellular morphology – as well as the morphology of the endoplasmic reticulum and other organelles – on neuronal calcium signals is currently being investigated. This endeavor makes use of highly detailed, three-dimensional models of neuronal calcium dynamics, including the three-dimensional morphology of the cell and its organelles.

- Synaptic bouton properties are tuned to best fit the prevailing firing pattern (2014)
- The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junction (NMJ) of body wall muscles of Drosophila larvae. These NMJs are built by two motor neurons forming two types of glutamatergic multi-release-site boutons with two typical diameters. However, it is unknown why these distinct nerve terminal configurations are used on the same postsynaptic muscle fiber. To systematically dissect the biophysical properties of these boutons we developed a full three-dimensional model of such boutons, their release sites and transmitter-harboring vesicles and analyzed the local vesicle dynamics of various configurations during stimulation. Here we show that the rate of transmission of a bouton is primarily limited by diffusion-based vesicle movements and that the probability of vesicle release and the size of a bouton affect bouton-performance in distinct temporal domains allowing for an optimal transmission of the neural signals at different time scales. A comparison of our in silico simulations with in vivo recordings of the natural motor pattern of both neurons revealed that the bouton properties resemble a well-tuned cooperation of the parameters release probability and bouton size, enabling a reliable transmission of the prevailing firing-pattern at diffusion-limited boutons. Our findings indicate that the prevailing firing-pattern of a neuron may determine the physiological and morphological parameters required for its synaptic terminals.

- 1D-3D hybrid modeling : from multi-compartment models to full resolution models in space and time (2014)
- Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.