Refine
Document Type
- Article (1)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Keywords
- Coulombspaltung (1)
- r-Prozess (1)
- The nucleosynthesis of heavy elements in Stars: the key isotope 25Mg (2014)
- We have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n_TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.
- 13,14B(n,γ) via Coulomb dissociation to constrain the astrophysical r-process (2014)
- The subject of this thesis is the experimental investigation of the neutron-capture cross sections of the neutron-rich, short-lived boron isotopes 13B and 14B, as they are thought to influence the rapid neutron-capture process (r process) nucleosynthesis in a neutrino-driven wind scenario. The 13;14B(n,g)14;15B reactions were studied in inverse kinematics via Coulomb dissociation at the LAND/R3B setup (Reactions with Relativistic Radioactive Beams). A radioactive beam of 14;15B was produced via in-flight fragmentation and directed onto a lead-target at about 500 AMeV. The neutron breakup of the projectile within the electromagnetic field of the target nucleus was investigated in a kinematically complete measurement. All outgoing reaction products were detected and analyzed in order to reconstruct the excitation energy. The differential Coulomb dissociation cross sections as a function of the excitation energy were obtained and first experimental constraints on the photoabsorption and the neutron-capture cross sections were deduced. The results were compared to theoretical approximations of the cross sections in question. The Coulomb dissociation cross section of 15B into 14B(g.s.) + n was determined to be s(15B;14B(g:s:)+n) CD = 81(8stat)(10syst) mb ; while the Coulomb dissociation cross section of 14B into a neutron and 13B in its ground state was found to be s(14B;13B(g:s:)+n) CD = 281(25stat)(43syst) mb: Furthermore, new information on the nuclear structure of 14B were achieved, as the spectral shape of the differential Coulomb dissociation cross section indicates a halolike structure of the nucleus. Additionally, the Coulomb dissociation of 11Be was investigated and compared to previous measurements in order to verify the present analysis. The corresponding Coulomb dissociation cross section of 11Be into 10Be(g.s.) + n was found to be 450(40stat)(54syst ) mb, which is in good agreement with the results of Palit et al.
- 238U(n, γ) reaction cross section measurement with C6D6 detectors at the n_TOF CERN facility (2014)
- The radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.