Refine
Keywords
- 140Ce (1)
- MACS (1)
- capture (1)
- cerium (1)
- cross-section (1)
- n_TOF (1)
- neutron (1)
- nucleosynthesis (1)
- s-process (1)
Institute
- Neutron transmission measurements at nELBE (2020)
- Neutron total cross sections are an important source of experimental data in the evaluation of neutron-induced cross sections. The sum of all neutron-induced reaction cross sections can be determined with a precision of a few per cent in a relative measurement. The neutron spectrum of the photoneutron source nELBE extends in the fast region from about 100 keV to 10 MeV and has favourable conditions for transmission measurements due to the low instantaneous flux of neutrons and low gamma-flash background. Several materials of interest (in part included in the CIELO evaluation or on the HPRL of OECD/NEA) have been investigated: 197Au [1, 2], natFe [2], natW [2], 238U, natPt, 4He, natO, natNe, natXe. For gaseous targets high pressure gas cells with flat end-caps have been built that hold up to 200 bar pressure. The experimental setup will be presented including results from several transmission experiments and the data analysis leading to the total cross sections will be discussed.
- First results of the 140Ce(n,γ)141Ce cross-section measurement at n_TOF (2021)
- An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section.