Refine
Year of publication
Keywords
- LSCC (2)
- Platelet-rich fibrin (2)
- Tissue engineering (2)
- disintegration (2)
- multinucleated giant cells (2)
- platelet-rich fibrin (2)
- platelets (2)
- regeneration (2)
- wound healing (2)
- A-PRF+ (1)
- Tumor-associated macrophages, angiogenesis, and tumor cell migration in oral squamous cell carcinoma (2017)
- Objective: To investigate the relationship between tumor-associated macrophages (TAMs), neovascularization, and tumor cell migration in oral squamous cell carcinoma (OSCC) of an African subpopulation. Materials and Methods: Twenty OSCC paraffin blocks underwent immunohistochemistry to TAM1 (CCR7), TAM2 (CD206), Twist, E-cadherin, N-cadherin, and CD34. The relative percentage of CCR7 + and CD206 + cells to overall immune cell population was calculated for three high power fields and an average was taken. TAM-related microvessel density (MVD) was determined as the mean of the three recorded values. Cases that had no CD34 + vessels adjacent to the TAMs region were regarded as having an MVD score of 0. Results: Ten cases (50%) expressed greater CCR7 activity than CD206, seven cases (35%) expressed approximately equal activity of CCR7 and CD206, while three cases (15%) expressed greater activity of CD206 than CCR7. Twist expression was strong in some cases with strong N-cadherin and weak E-cadherin, but the expression of Twist was not consistently high in all cases that expressed strong N-cadherin and weak E-cadherin. Conclusions: TAMs distribution suggested antitumor activity and the potential for tumor metastasis was only partly due to Twist-mediated epithelial–mesenchymal transition.
- The utility of azan trichrome staining in Ameloblastoma (2016)
- Background: It is occasionally difficult to distinguish the stellate reticulum-like region of ameloblastoma from the fibrous connective tissue stroma. This difficulty is further pronounced in the plexiform variant of ameloblastoma that has very sparse fibrous connective tissue. Aim: To test the utility of Azan trichrome stain in marking tumour regions and the peri-tumour environment of ameloblastoma. Materials and Methods: Sections were prepared for 18 formalin fixed paraffin-embedded blocks of ameloblastoma cases and stained with Azan trichrome stain according to the manufacturer's specification. Results and Conclusions: The tumour areas were stained mostly brown, with the ameloblasts mainly marked as deep brown while the stellate reticulum-like region was light brown. The structures in the peri-tumour region were marked with different shades of blue. Azan trichrome staining was able to distinguish between the fibrous connective tissue and the stellate reticulum-like areas in 100% of the cases.
- The effect of coatings and nerve growth factor on attachment and differentiation of pheochromocytoma cells (2017)
- Cellular attachment plays a vital role in the differentiation of pheochromocytoma (PC12) cells. PC12 cells are noradrenergic clonal cells isolated from the adrenal medulla of Rattus norvegicus and studied extensively as they have the ability to differentiate into sympathetic neuron-like cells. The effect of several experimental parameters including (i) the concentration of nerve growth factor (NGF); (ii) substratum coatings, such as poly-L-lysine (PLL), fibronectin (Fn), and laminin (Lam); and (iii) double coatings composed of PLL/Lam and PLL/Fn on the differentiation process of PC12 cells were studied. Cell morphology was visualised using brightfield phase contrast microscopy, cellular metabolism and proliferation were quantified using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, and the neurite outgrowth and axonal generation of the PC12 cells were evaluated using wide field fluorescence microscopy. It was found that double coatings of PLL/Lam and PLL/Fn supported robust adhesion and a two-fold enhanced neurite outgrowth of PC12 cells when treated with 100 ng/mL of NGF while exhibiting stable metabolic activity, leading to the accelerated generation of axons.
- Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors : the first introduction to the low speed centrifugation concept (2017)
- Purpose: The aim of this study was to analyze systematically the influence of the relative centrifugation force (RCF) on leukocytes, platelets and growth factor release within fluid platelet-rich fibrin matrices (PRF). Materials and methods: Systematically using peripheral blood from six healthy volunteers, the RCF was reduced four times for each of the three experimental protocols (I–III) within the spectrum (710–44 g), while maintaining a constant centrifugation time. Flow cytometry was applied to determine the platelets and leukocyte number. The growth factor concentration was quantified 1 and 24 h after clotting using ELISA. Results: Reducing RCF in accordance with protocol-II (177 g) led to a significantly higher platelets and leukocytes numbers compared to protocol-I (710 g). Protocol-III (44 g) showed a highly significant increase of leukocytes and platelets number in comparison to -I and -II. The growth factors’ concentration of VEGF and TGF-β1 was significantly higher in protocol-II compared to -I, whereas protocol-III exhibited significantly higher growth factor concentration compared to protocols-I and -II. These findings were observed among 1 and 24 h after clotting, as well as the accumulated growth factor concentration over 24 h. Discussion: Based on the results, it has been demonstrated that it is possible to enrich PRF-based fluid matrices with leukocytes, platelets and growth factors by means of a single alteration of the centrifugation settings within the clinical routine. Conclusions: We postulate that the so-called low speed centrifugation concept (LSCC) selectively enriches leukocytes, platelets and growth factors within fluid PRF-based matrices. Further studies are needed to evaluate the effect of cell and growth factor enrichment on wound healing and tissue regeneration while comparing blood concentrates gained by high and low RCF.
- Razina pročišćenosti alogenoga koštanog bloka = Variant purification of an allogeneic bone block (2017)
- Radiation sensitization of basal cell and head and neck squamous cell carcinoma by the hedgehog pathway inhibitor vismodegib (2018)
- Vismodegib, an inhibitor of the Hedgehog signaling pathway, is an approved drug for monotherapy in locally advanced or metastatic basal cell carcinoma (BCC). Data on combined modality treatment by vismodegib and radiation therapy, however, are rare. In the present study, we examined the radiation sensitizing effects of vismodegib by analyzing viability, cell cycle distribution, cell death, DNA damage repair and clonogenic survival in three-dimensional cultures of a BCC and a head and neck squamous cell carcinoma (HNSCC) cell line. We found that vismodegib decreases expression of the Hedgehog target genes glioma-associated oncogene homologue (GLI1) and the inhibitor of apoptosis protein (IAP) Survivin in a cell line- and irradiation-dependent manner, most pronounced in squamous cell carcinoma (SCC) cells. Furthermore, vismodegib significantly reduced proliferation in both cell lines, while additional irradiation only slightly further impacted on viability. Analyses of cell cycle distribution and cell death induction indicated a G1 arrest in BCC and a G2 arrest in HNSCC cells and an increased fraction of cells in SubG1 phase following combined treatment. Moreover, a significant rise in the number of phosphorylated histone-2AX/p53-binding protein 1 (γH2AX/53BP1) foci in vismodegib- and radiation-treated cells was associated with a significant radiosensitization of both cell lines. In summary, these findings indicate that inhibition of the Hedgehog signaling pathway may increase cellular radiation response in BCC and HNSCC cells.
- PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics (2015)
- Introduction: ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Methods: twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Results: moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. Conclusion: the importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents.
- Platelet-rich fibrin secretome induces three dimensional angiogenic activation in vitro (2019)
- Different tissue engineering techniques are used to support rapid vascularisation. A novel technique is the use of platelet-rich fibrin (PRF), an autologous source of growth factors. This study was the first to investigate the influence of PRF matrices, isolated following different centrifugation protocols, on human dermal vascular endothelial cells (ECs) in mono-culture and co-culture with human primary fibroblasts (HFs) as an in vitro model for tissue regeneration. Focus was placed on vascular structure formation and growth factor release. HFs and ECs were cultivated with PRF prepared using a high (710 ×g) or low (44 ×g) relative centrifugation force (RCF) over 14 d. Immunofluorescence staining and immunohistochemistry were used to evaluate the microvascular formation. Cell culture supernatants were collected for evaluation of growth factor release. The results showed a PRF-mediated effect on the induction of angiogenesis in ECs. Microvessel-like structure formation was promoted when ECs were combined with low-RCF PRF as compared to high-RCF PRF or control group. The percentage of vascular lumen area was significantly higher in low-RCF PRF, especially at day 7, which coincided with statistically significantly higher growth factor [vascular endothelial factor (VEGF), transforming growth factor β1 (TGF-β1) and platelet derived growth factor (PDGF)] concentration measured in low-RCF PRF as compared to high-RCF PRF or control group. In conclusion, reducing the RCF according to the low-speed centrifugation concept (LSCC) resulted in increased growth factor release and angiogenic structure formation with EC mono-culture, suggesting that PRF may be a highly beneficial therapeutic tool for tissue engineering applications.
- Pheochromocytoma (PC12) cell response on mechanobactericidal titanium surfaces (2018)
- Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.
- Non-equivalence of antibiotic generic drugs and risk for intensive care patients (2013)
- Background: The underlying axiom in applying generic drugs is the equivalence of their active ingredient with the (usually more expensive) innovator product, an all-embracing statement with the insidious result that physicians assume that the generic products have been subjected to the same rigorous testing regimens as the brand-name products. The present paper presents novel experimental data on an investigator-blinded comparison between the innovator imipenem antibiotic, and a number of its generics. Methods: Particulate matter contamination of each group was visualized by means of a membrane filter method. Functional studies in an animal model–the dorsal skinfold chamber technique in mice-designed to simulate the state of microcirculatory dysfunction in intensive care patients was performed, in order to assess the influence of the particulate matter of each group on the functional capillary density of the striated skin muscle, after their intravenous injection. Results: The results showed massive particulate contamination of the generics, in a size range relevant for impacting the microcirculation. The particulate contamination contributed in some generic groups to a significant shutdown of tissue perfusion. Conclusion: The presented data underscore the need to raise the regulatory barriers for the entry of generics to the market, well beyond the simplistic proof of “bioequivalence”, which in no measure deals with the essential questions of quality and patient safety. If generics are used, they should be tested by a filter technique and optical microscopy, to ensure the absence especially of small particulate contaminants and their purity.