### Refine

#### Keywords

- neutralino (3)
- CDM (2)
- Dirac-Brueckner theory (2)
- Dirac-Brückner Theorie (2)
- Tevatron (2)
- black holes (2)
- cold dark matter (2)
- große Extradimensionen (2)
- large extra dimensions (2)
- supersymmetric particle (2)

- Effects of nuclear orientation on fusion and fission in the reaction using 238U target nucleus (2010)
- Fission fragment mass distributions in the reaction of 30Si+238U were measured around the Coulomb barrier. At the above-barrier energies, the mass distribution showed a Gaussian shape. At the subbarrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at AL/AH ~ 90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections for 30Si+238U. The cross-section for 263Sg at the abovebarrier energy agree with the statistical model calculation which assumes that the measured fission cross-section originates from fusion-fission, whereas the one for 264 Sg measured at the sub-barrier energy is smaller than the calculation, which suggests the presence of quasifission.

- Tevatron - probing TeV-scale gravity today (2002)
- The production of black holes at Tevatron and LHC in spacetimes with compactified space-like large extra dimensions is studied. Either black holes can already be observed in ¯ pp collisions at s = 1.8 TeV or the fundamental gravity scale has to be above 1.4 TeV. At LHC the creation of a large number of quasi-stable black holes is predicted, with lifetimes beyond several hundred fm/c. A cut-off in the high-PT jet cross section is shown to be a unique signature of black hole production. This signal is compared to the jet plus missing energy signature due to graviton production in the final state as proposed by the ATLAS collaboration.

- Kaon effective mass and energy from a novel chiral SU(3) symmetric Lagrangian (1999)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe

- Signatures in the Planck regime (2003)
- String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle does not allow to resolve space time distances below the Planck length. In models with extra dimensions, which are also motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRs) and by future colliders, i.e. M f approximately equal to 1 TeV. It is demonstrated that in this novel scenario, short distance physics below 1/M f is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future colliders and in UHECRs. As an application, we predict the modifications to the e+ e- to f+ f- cross-sections.

- Suppression of high-P T jets as a signal for large extra dimensions and new estimates of lifetimes for meta stable micro black holes : from the early universe to future colliders (2002)
- We address the production of black holes at LHC in space times with compactified space-like large extra dimensions (LXD). Final state black hole production leads to suppression of high-PT jets, i.e. a sharp cut-o in (pp!jet+X). This signal is compared to the jet plus missing energy signature due to graviton production in the final state as proposed by the ATLAS collaboration. Time evolution and lifetimes of the newly created black holes are calculated based on the micro- canonical formalism. It is demonstrated that previous lifetime estimates of micro black holes have been dramatically underestimated. The creation of a large number of quasi-stable black holes is predicted with life times of hundred fm/c at LHC. Medium modifications of the black holes evaporation rate due to the quark gluon plasma in relativistic heavy ion collisions as well as provided by the cosmic fluid in the early universe are studied

- Damping scales of neutralino cold dark matter (2001)
- The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark matter (CDM) has a sharp cut-off due to two damping mechanisms: collisional damping during the kinetic decoupling of the neutralinos at about 30 MeV (for typical neutralino and sfermion masses) and free streaming after last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling temperature by one order of magnitude. The cut-off in the primordial spectrum defines a minimal mass for CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravitationally bound neutralino clouds have to have masses above 10 7M . PACS numbers: 14.80.Ly, 98.35.Ce, 98.80.-k, 98.80.Cq

- Effective kaon energy from a novel chiral SU(3) model (1998)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and anti-kaons in the nuclear medium. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After introducing the coupling between the omega meson and the kaon, our results for e ective kaon and anti-kaon energy are quite similar as calculated in the one-boson-exchange model.

- Quasi-stable black holes at the large hadron collider (2002)
- We address the production of black holes at LHC and their time evolution in space times with compactified space like extra dimensions. It is shown that black holes with life times of several hundred fm/c can be produced at LHC. The possibility of quasi-stable remnants is discussed.

- Black hole relics in large extra dimensions (2003)
- Recent calculations applying statistical mechanics indicate that in a setting with compactified large extra dimensions a black hole might evolve into a (quasi-)stable state with mass close to the new fundamental scale M f. Black holes and therefore their relics might be produced at the LHC in the case of extra-dimensional topologies. In this energy regime, Hawking's evaporation scenario is modified due to energy conservation and quantum effects. We reanalyse the evaporation of small black holes including the quantisation of the emitted radiation due to the finite surface of the black hole. It is found that observable stable black hole relics with masses sim 1-3 M f would form which could be identified by a delayed single jet with a corresponding hard momentum kick to the relic and by ionisation, e.g. in a TPC.

- Quasi-stable black holes at LHC (2001)
- We address the production of black holes at LHC and their time evolution in space times with compactified space like extra dimensions. It is shown that black holes with life times of several hundred fm/c can be produced at LHC. The possibility of quasi-stable remnants is discussed.