### Refine

#### Year of publication

#### Keywords

- Dirac (2)
- QCD (2)
- Quanten-Chromodynamik (2)
- heavy-ion collisions (2)
- Dichte (1)
- Elementarteilchen (1)
- Elementary particle (1)
- Gleichgewicht (1)
- Hadron (1)
- Hartree (1)

#### Institute

- Chiral model for dense, hot and strange hadronic matter (1999)
- Introduction: Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One succesfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models [1], where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting e ective models. It has been shown [2,3] that effective sigma-omega models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] we have shown that an extended SU(3) × SU(3) chiral sigma-omega model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet[5]), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here we will discuss the predictions of this model for dense, hot, and strange hadronic matter.

- Critical review of quark gluon plasma signals (2000)
- Compelling evidence for a new form of matter has been claimed to be formed in Pb+Pb collisions at SPS. We critically review two suggested signatures for this new state of matter: First the suppression of the J/psi , which should be strongly suppressed in the QGP by two different mechanisms, the color-screening [1] and the QCD-photoe ect [2]. Secondly the measured particle, in particular strange hadronic, ratios might signal the freeze-out from a quark-gluon phase.

- Effects of Dirac sea polarization on hadronic properties : a Chiral SU(3) approach (2003)
- Abstract: The e ect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The e ect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This e ect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange ( ) and the strange ( ) scalar fields.

- Hadrons in dense resonance matter: a chiral SU(3) approach (2000)
- A nonlinear chiral SU(3) approach including the spin 3 2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Di erent methods of mass generation show significant differences in the properties of the spin- 3 2 particles and in the nuclear equation of state

- Hypermatter in chiral field theory (1997)
- Abstract. A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L × SU(3)R -model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. Finite nuclei can be reasonably described, too. The condensates and the e ective baryon masses at finite baryon density and temperature are discussed.

- Impact of baryon resonances on the chiral phase transition at finite temperature and density (2004)
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.

- In-medium vector meson masses in a chiral SU(3) model (2003)
- A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the e ects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation e ects from the nucleon sector and is not observed in the mean field approximation.

- Neutron star properties in a chiral SU(3) model (1999)
- We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv

- Nuclei in a chiral SU(3) model (1998)
- Nuclei can be described satisfactorily in a nonlinear chiral SU(3)-framework, even with standard potentials of the linearmodel. The condensate value of the strange scalar meson is found to be important for the properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU(3). We discuss inherent problems with chiral SU(3) models regarding hyperon optical potentials.

- Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model (2001)
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.