### Refine

#### Year of publication

#### Keywords

- Dirac (2)
- Dirac-Brueckner theory (2)
- Dirac-Brückner Theorie (2)
- Lagrangian (2)
- QCD (2)
- Quanten-Chromodynamik (2)
- Quantenchromodynamik (2)
- Quantum Chromodynamics (2)
- antikaon (2)
- baryon (2)

#### Institute

- Unlike particle correlations and the strange quark matter distillation process (2002)
- We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.

- Superheavy nuclei in a chiral hadronic model (2000)
- Superheavy nuclei are investigated in a nonlinear chiral SU(3)-model. The proton number Z=120 and neutron numbers of N=172, 184 and 198 are predicted to be magic. The charge distributions and alpha-decay chains hint towards a hollow stucture.

- Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model (2001)
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.

- Nanolesions induced by heavy ions in human tissues: experimental and theoretical studies (2012)
- The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by using different DNA repair markers. We have studied the kinetics of repair of these “streaks” also with respect to the chromatin conformation. Initial steps in the modeling of the energy deposition patterns at the micrometer and nanometer scale were made with MCHIT and TRAX models, respectively.

- Coulomb effects on electromagnetic pair production in ultrarelativistic heavy-ion collisions (1999)
- We calculate the asymptotic high-energy amplitude for electrons scattering at one ion, as well as at two colliding ions, by means of perturbation theory. We show that the interaction with one ion eikonalizes and that the interaction with two ions causally decouples. We are able to put previous results on perturbative grounds and propose further applications for the obtained rules for interactions on the light cone. We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic peripheral heavy-ion collisions. In this context the Weizsäcker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles’ mass. A new equivalent single-photon distribution is derived, which correctly accounts for Coulomb distortions. The impact on single-photon induced processes is discussed.

- Neutron star properties in a chiral SU(3) model (1999)
- We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv

- Kaon effective mass and energy from a novel chiral SU(3) symmetric Lagrangian (1999)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe

- Effective kaon energy from a novel chiral SU(3) model (1998)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and anti-kaons in the nuclear medium. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After introducing the coupling between the omega meson and the kaon, our results for e ective kaon and anti-kaon energy are quite similar as calculated in the one-boson-exchange model.

- Effects of Dirac sea polarization on hadronic properties : a Chiral SU(3) approach (2003)
- Abstract: The e ect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The e ect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This e ect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange ( ) and the strange ( ) scalar fields.

- Kaons and antikaons in hot and dense hadronic matter (2004)
- Abstract: The medium modification of kaon and antikaon masses, compatible with low energy KN scattering data, are studied in a chiral SU(3) model. The mutual interactions with baryons in hot hadronic matter and the e ects from the baryonic Dirac sea on the K( ¯K ) masses are examined. The in-medium masses from the chiral SU(3) e ective model are compared to those from chiral perturbation theory. Furthermore, the influence of these in-medium e ects on kaon rapidity distributions and transverse energy spectra as well as the K, ¯K flow pattern in heavy-ion collision experiments at 1.5 to 2 A·GeV are investigated within the HSD transport approach. Detailed predictions on the transverse momentum and rapidity dependence of directed flow v1 and the elliptic flow v2 are provided for Ni+Ni at 1.93 A·GeV within the various models, that can be used to determine the in-medium K± properties from the experimental side in the near future.