### Refine

#### Year of publication

#### Document Type

- Preprint (43) (remove)

#### Keywords

- HICs (1)
- High Energy Physics - Phenomenology (1)
- Hohe Energie (1)
- J/ϕ (1)
- Kosmischer Strahl (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)
- Nuclear Theory (1)
- QGP signals (1)
- SENECA model (1)
- Schwerionenphysik (1)

#### Institute

- Current status of quark gluon plasma signals (2001)
- Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.

- (Strange) meson interferometry at RHIC (2002)
- We make predictions for the kaon interferometry measurements in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). A first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons is assumed for the transport calculations. The fraction of kaons that are directly emitted from the phase boundary is considerably enhanced at large transverse momenta K T ~ 1 GeV/c. In this kinematic region, the sensitivity of the R out/R side ratio to the QGP-properties is enlarged. Here, the results of the 1-dimensional correlation analysis are presented. The extracted interferometry radii, depending on K-Theta, are not unusually large and are strongly affected by momentum resolution effects.

- The origin of transverse flow at the SPS (1998)
- We study the transverse expansion in central Pb+Pb collisions at the CERN SPS. Strong collective motion of hadrons can be created. This flow is mainly due to meson baryon rescattering. It allows to study the angular distribution of intermediate mass meson baryon interactions.

- Medium modifications of the nucleon-nucleon elastic cross section in neutron-rich intermediate energy HICs (2006)
- Several observables of unbound nucleons which are to some extent sensitive to the medium modifications of nucleon-nucleon elastic cross sections in neutron-rich intermediate energy heavy ion collisions are investigated. The splitting effect of neutron and proton effective masses on cross sections is discussed. It is found that the transverse flow as a function of rapidity, the Q_zz as a function of momentum, and the ratio of halfwidths of the transverse to that of longitudinal rapidity distribution R_t/l are very sensitive to the medium modifications of the cross sections. The transverse momentum distribution of correlation functions of two-nucleons does not yield information on the in-medium cross section.

- Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model (1999)
- Hadron-hadron collisions at high energies are investigated in the Ultra- relativistic-Quantum-Molecular-Dynamics approach. This microscopic trans- port model describes the phenomenology of hadronic interactions at low and intermediate energies ( s < 5 GeV) in terms of interactions between known hadrons and their resonances. At higher energies, s > 5 GeV, the excitation of color strings and their subsequent fragmentation into hadrons dominates the multiple production of particles in the UrQMD model. The model shows a fair overall agreement with a large body of experimental h-h data over a wide range of h-h center-of-mass energies. Hadronic reaction data with higher precision would be useful to support the use of the UrQMD model for relativistic heavy ion collisions.

- A fast hybrid approach to air shower simulations and applications (2003)
- The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of efficient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to reproduce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite efficient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.

- Model dependence of lateral distribution functions of high energy cosmic ray air showers (2003)
- The influence of high and low energy hadronic models on lateral distribution functions of cosmic ray air showers for Auger energies is explored. A large variety of presently used high and low energy hadron interaction models are analysed and the resulting lateral distribution functions are compared. We show that the slope depends on both the high and low energy hadronic model used. The models are confronted with available hadron-nucleus data from accelerator experiments.

- Physics opportunities at RHIC and LHC (1999)
- Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.

- Probing the density dependence of the symmetry potential in intermediate energy heavy ion collisions (2005)
- Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Delta-/Delta++ and pi -/pi + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the pi -/pi + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the pi -/pi + ratio significantly, though it alters only slightly the pi- and pi+ total yields. The pi- yields, especially at midrapidity or at low transverse momenta and the p-/pi+ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K0 and K+ mesons, is also investigated.

- Probing the equation of state with pions (2005)
- The influence of the isospin-independent, isospin- and momentum-dependent equation of state (EoS), as well as the Coulomb interaction on the pion production in intermediate energy heavy ion collisions (HICs) is studied for both isospin-symmetric and neutron-rich systems. The Coulomb interaction plays an important role in the reaction dynamics, and strongly influences the rapidity and transverse momentum distributions of charged pions. It even leads to the pi- pi+ ratio deviating slightly from unity for isospin-symmetric systems. The Coulomb interaction between mesons and baryons is also crucial for reproducing the proper pion flow since it changes the behavior of the directed and the elliptic flow components of pions visibly. The EoS can be better investigated in neutron-rich system if multiple probes are measured simultaneously. For example, the rapidity and the transverse momentum distributions of the charged pions, the pi- pi+ ratio, the various pion flow components, as well as the difference of pi+-pi- flows. A new sensitive observable is proposed to probe the symmetry potential energy at high densities, namely the transverse momentum distribution of the elliptic flow difference [Delta v_2^pi+ - pi-(p_t rm c.m.].