Refine
Keywords
- COVID-19 (1)
- Critical care (1)
- DST (1)
- Drug susceptibility testing (1)
- Ebola virus (1)
- Fingolimod (1)
- Francisella tularensis (1)
- Francisella tularensis subspecies holarctica (1)
- M. Intracellulare (1)
- M. avium (1)
- Decreased HIV diversity after allogeneic stem cell transplantation of an HIV-1 infected patient : a case report (2010)
- The human immunodeficiency virus type 1 (HIV-1) coreceptor use and viral evolution were analyzed in blood samples from an HIV-1 infected patient undergoing allogeneic stem cell transplantation (SCT). Coreceptor use was predicted in silico from sequence data obtained from the third variable loop region of the viral envelope gene with two software tools. Viral diversity and evolution was evaluated on the same samples by Bayesian inference and maximum likelihood methods. In addition, phenotypic analysis was done by comparison of viral growth in peripheral blood mononuclear cells and in a CCR5 (R5)-deficient T-cell line which was controlled by a reporter assay confirming viral tropism. In silico coreceptor predictions did not match experimental determinations that showed a consistent R5 tropism. Anti-HIV directed antibodies could be detected before and after the SCT. These preexisting antibodies did not prevent viral rebound after the interruption of antiretroviral therapy during the SCT. Eventually, transplantation and readministration of anti-retroviral drugs lead to sustained increase in CD4 counts and decreased viral load to undetectable levels. Unexpectedly, viral diversity decreased after successful SCT. Our data evidence that only R5-tropic virus was found in the patient before and after transplantation. Therefore, blocking CCR5 receptor during stem cell transplantation might have had beneficial effects and this might apply to more patients undergoing allogeneic stem cell transplantation. Furthermore, we revealed a scenario of HIV-1 dynamic different from the commonly described ones. Analysis of viral evolution shows the decrease of viral diversity even during episodes with bursts in viral load.
- Superimposed high-frequency jet ventilation combined with continuous positive airway pressure/assisted spontaneous breathing improves oxygenation in patients with H1N1-associated ARDS (2012)
- Background: Numerous cases of swine-origin 2009 H1N1 influenza A virus (H1N1)-associated acute respiratory distress syndrome (ARDS) bridged by extracorporeal membrane oxygenation (ECMO) therapy have been reported; however, complication rates are high. We present our experience with H1N1-associated ARDS and successful bridging of lung function using superimposed high-frequency jet ventilation (SHFJV) in combination with continuous positive airway pressure/assisted spontaneous breathing (CPAP/ASB). Methods: We admitted five patients with H1N1 infection and ARDS to our intensive care unit. Although all patients required pure oxygen and controlled ventilation, oxygenation was insufficient. We applied SHFJV/CPAP/ASB to improve oxygenation. Results: Initial PaO2/FiO2 ratio prior SHFJV was 58-79 mmHg. In all patients, successful oxygenation was achieved by SHFJV (PaO2/FiO2 ratio 105-306 mmHg within 24 h). Spontaneous breathing was set during first hours after admission. SHFJV could be stopped after 39, 40, 72, 100, or 240 h. Concomitant pulmonary herpes simplex virus (HSV) infection was observed in all patients. Two patients were successfully discharged. The other three patients relapsed and died within 7 weeks mainly due to combined HSV infection and in two cases reoccurring H1N1 infection. Conclusions: SHFJV represents an alternative to bridge lung function successfully and improve oxygenation in the critically ill.
- Clinical characteristics in a sentinel case as well as in a cluster of tularemia patients associated with grape harvest (2019)
- Background: Tularemia is caused by Francisella tularensis and can occasionally establish foodborne transmission. Methods: Patients were identified by active case detection through contact with the treating physicians and consent for publication was obtained. Clinical data were accumulated through a review of the patient charts. Serology, culture, and PCR methods were performed for confirmation of the diagnosis. Case cluster: A 46-year-old patient was hospitalised in the University Hospital Frankfurt (a tertiary care hospital) for pharyngitis and cervical lymphadenitis with abscess. A diagnosis of tularemia was made serologically, but treatment with ciprofloxacin initially failed. F. tularensis was detected in pus from the lymph node using a specific real-time PCR. The use of RD1 PCR led to the identification of the subspecies holarctica. Antibiotic therapy with high-dose ciprofloxacin and gentamicin was administered and was subsequently changed to ciprofloxacin and rifampicin. During a must-tasting, five other individuals became infected with tularemia by ingestion of contaminated must. All patients required treatment durations of more than 14 days. Conclusions: Mechanically harvested agricultural products, such as wine must, can be a source of infection, probably due to contamination with animal carcasses. The clinical course of tularemia can be complicated and prolonged and requires differentiated antibiotic treatment.
- Severe COVID-19 infection in a patient with multiple sclerosis treated with fingolimod (2020)
- Background: Fingolimod is used for immune therapy in patients with multiple sclerosis. Long-term treatment is associated with a small increase in the risk of herpes virus reactivation and respiratory tract infections. Patients with coronavirus disease 2019 (COVID-19) under Fingolimod treatment have not been described. Methods and results. We report a 57-year old female patient with a relapsing remitting multiple sclerosis under fingolimod treatment who experienced a severe COVID-19 infection in March 2020 (Extended Disability Status Scale: 2.0). Having peripheral lymphopenia typical for fingolimod treatment (total lymphocytes 0.39/nL [reference range 1.22-3.56]), the patient developed bilateral interstitial pneumonia with multiple ground-glass opacities on chest CT. Fingolimod medication was stopped. On the intensive care unit, non-invasive ventilation was used to provide oxygen and ventilation support regularly. Over the following two days, oxygenation improved, and the patient was transferred to a normal ward five days after admission. Conclusion: The implications fingolimod has on COVID-19 are complex. As an S1P analogue, fingolimod might enhance lung endothelial cell integrity. In addition, in case of a so-called cytokine storm, immunomodulation might be beneficial to reduce mortality. Future studies are needed to explore the risks and therapeutic effects of fingolimod in COVID-19 patients.
- Epitopes of naturally acquired and vaccine‐induced anti‐ebola virus glycoprotein antibodies in single amino acid resolution (2020)
- The Ebola virus (EBOV) can cause severe infections in humans, leading to a fatal outcome in a high percentage of cases. Neutralizing antibodies against the EBOV surface glycoprotein (GP) can prevent infections, demonstrating a straightforward way for an efficient vaccination strategy. Meanwhile, many different anti‐EBOV antibodies have been identified, whereas the exact binding epitopes are often unknown. Here, the analysis of serum samples from an EBOV vaccine trial with the recombinant vesicular stomatitis virus‐Zaire ebolavirus (rVSV‐ZEBOV) and an Ebola virus disease survivor, using high‐density peptide arrays, is presented. In this proof‐of‐principle study, distinct IgG and IgM antibodies binding to different epitopes of EBOV GP is detected: By mapping the whole GP as overlapping peptide fragments, new epitopes and confirmed epitopes from the literature are found. Furthermore, the highly selective binding epitope of a neutralizing monoclonal anti‐EBOV GP antibody could be validated. This shows that peptide arrays can be a valuable tool to study the humoral immune response to vaccines in patients and to support Ebola vaccine development.
- Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex (2020)
- Objective: Phenotypic (Sensititre Myco, pDST) and genotypic drug susceptibility testing (GenoType NTM DR, gDST) in M. avium complex (MAC) have become available as standardized assays, but comparable data is needed. This study aimed to investigate the phenotypic and genotypic drug susceptibility patterns in MAC clinical isolates. Methods: Overall, 98 isolates from 85 patients were included. pDST and gDST were performed on all isolates and results compared regarding specificity and sensitivity using pDST as a reference method. The impact of drug instability on pDST results was studied using a biological assay over 14 days. In addition, the evolution of antimicrobial resistance was investigated in sequential isolates of 13 patients. Results: Macrolide resistance was rare, 1.2% (95% CI 0.7–7.3) of isolates in the base cohort. No aminoglycoside resistances were found, but 14.1% of the studied isolates (95% CI 7.8–23.8) showed intermediate susceptibility. The GenoType NTM DR identified two out of four macrolide-resistant isolates. Antibiotic stability was demonstrated to be poor in rifampicin, rifabutin, and doxycycylin. Conclusions: pDST results in NTM for unstable antibiotics must be interpreted with care. A combination of pDST and gDST will be useful for the guidance of antimicrobial therapy in MAC-disease.