Refine
Institute
- Production of K∗(892)0 and ϕ(1020) in p–Pb collisions at √sNN = 5.02 TeV (2016)
- The production of K∗(892)0 and ϕ(1020) mesons has been measured in p–Pb collisions at √sNN = 5.02 TeV. K∗0 and ϕ are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range - 0.5 < y < 0. The transverse momentum spectra, measured as a function of the multiplicity, have a pT range from 0 to 15 GeV/c for K∗0 and from 0.3 to 21 GeV/c for ϕ. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at √s = 7 TeV and Pb–Pb collisions at √sNN = 2.76 TeV. In Pb–Pb and p–Pb collisions, K∗0 and ϕ probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-ϕ ratio are discussed as a function of the multiplicity of the event. The short-lived K∗0 is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase.
- Measurement of ϒ(1S) elliptic flow at forward rapidity in Pb-Pb collisions at √sNN = 5.02 TeV (2019)
- The first measurement of the ϒ(1S) elliptic flow coefficient (v2) is performed at forward rapidity (2.5 < y < 4) in Pb–Pb collisions at √sNN = 5.02 TeV with the ALICE detector at the LHC. The results are obtained with the scalar product method and are reported as a function of transverse momentum (pT) up to 15 GeV/c in the 5%–60% centrality interval. The measured Υ(1S)v2 is consistent with 0 and with the small positive values predicted by transport models within uncertainties. The v2 coefficient in 2 < pT < 15 GeV/c is lower than that of inclusive J/ψ mesons in the same pT interval by 2.6 standard deviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the Υ(1S) production in Pb–Pb collisions at LHC energies is dominated by dissociation limited to the early stage of the collision, whereas in the J/ψ case there is substantial experimental evidence of an additional regeneration component.