### Refine

#### Year of publication

#### Document Type

- Article (182)
- Preprint (155)
- Conference Proceeding (4)
- Report (1)
- Working Paper (1)

#### Keywords

- Kollisionen schwerer Ionen (26)
- heavy ion collisions (21)
- Kollisionen schwerer Ionen (14)
- heavy ion collisions (12)
- Quark-Gluon-Plasma (9)
- Quark Gluon Plasma (8)
- QGP (7)
- UrQMD (7)
- Zustandsgleichung (7)
- equation of state (6)

#### Institute

- Equation of state of resonance-rich matter in the central cell in heavy-ion collisions at √s =200 A GeV (2000)
- The equilibration of hot and dense nuclear matter produced in the central cell of central Au+Au collisions at RHIC (sqrt s = 200 A GeV) energies is studied within a microscopic transport model. The pressure in the cell becomes isotropic at t approx 5 fm/c after beginning of the collision. Within the next 15 fm/c the expansion of matter in the cell proceeds almost isentropically with the entropy per baryon ratio S/A approx 150, and the equation of state in the (P,epsilon) plane has a very simple form, P=0.15 epsilon. Comparison with the statistical model of an ideal hadron gas indicates that the time t approx 20 fm/c may be too short to reach the fully equilibrated state. Particularly, the creation of long-lived resonance-rich matter in the cell decelerates the relaxation to chemical equilibrium. This resonance-abundant state can be detected experimentally after the thermal freeze-out of particles.

- Direct emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary (1999)
- We discuss a model for the space-time evolution of ultrarelativistic heavy-ion collisions which employs relativistic hydrodynamics within one region of the forward light-cone, and microscopic transport theory (i.e. UrQMD) in the complement. Our initial condition consists of a quark-gluon plasma which expands hydrodynamically and hadronizes. After hadronization the solution eventually changes from expansion in local equilibrium to free streaming, as determined selfconsistently by the interaction rates between the hadrons and the local expansion rate. We show that in such a scenario the inverse slopes of the mT -spectra of multiple strange baryons ( Xi,Omega) are practically una ected by the purely hadronic stage of the reaction, while the flow of p's and Lambda's increases. Moreover, we find that the rather soft transverse expansion at RHIC energies (due to a first-order phase transition) is not washed out by strong rescattering in the hadronic stage. The earlier kinetic freeze-out as compared to SPS-energies results in similar inverse slopes (of the mT -spectra of the hadrons in the final state) at RHIC and SPS energies.

- J/psi suppression in heavy ion collisions - interplay of hard and soft QCD processes (1998)
- We study J/psi suppression in AB collisions assuming that the charmonium states evolve from small, color transparent configurations. Their interaction with nucleons and nonequilibrated, secondary hadrons is simulated us- ing the microscopic model UrQMD. The Drell-Yan lepton pair yield and the J/psi /Drell-Yan ratio are calculated as a function of the neutral transverse en- ergy in Pb+Pb collisions at 160 GeV and found to be in reasonable agreement with existing data.

- Optimal parametrization for the relativistic mean-field model of the nucleus (1988)
- We study a relativistic model of the nucleus consisting of nucleons coupled to mesonic degrees of freedom via an effective Lagrangian whose parameters are determined by a fit to selected nuclear ground-state data. We find that the model allows a very good description of nuclear ground-state properties. Because of the relativistic nature of the model, the spin properties are uniquely fixed. We discuss variations of the parametrization and of the data which suggest that the present fit has exhausted the limits of the mean-field approximation, and discuss extensions which go beyond the mean field.

- Role of multistep processes in heavy-ion inner-shell excitations (1979)
- This Letter discusses inner-shell excitation in collisions of very heavy ions (Z1+Z2≳140) in the framework of the quasimolecular model. The importance of multistep excitations and of coupling between continuum states is demonstrated. The 1sσ vacancy probabilities resulting from coupled-channels calculations exceed perturbation theory by a factor 3-5, thus giving good agreement with recent experimental results.

- Nonequilibrium dynamics of a hadronizing quark gluon plasma (1999)
- We investigate the hadronic cooling of a quark droplet within a microscopic model. The color flux tube approach is used to describe the hadronization of the quark phase. The model reproduces experimental particle ratios equally well compared to a static thermal hadronic source. Furthermore, the dynamics of the decomposition of a quark-gluon plasma is investigated and time dependent particle ratios are found.

- Rho meson broadening in hot and dense hadronic matter (1999)
- The modification of the width of rho mesons due to in-medium decays and collisions is evaluated. The decay width is calculated from the imaginary part of the one-loop selfenergy at finite temperature. The collision width is related to the cross sections of the rho + pion and the rho + nucleon reactions. A calculation based on an e ective Lagrangian shows the importance of including the direct pho pi - > pho pi scattering which is dominated by the a1 exchange. A large broadening of the spectral function is found, accompanied by a strength suppression at the pole. http://www.arxiv.org/abs/nucl-th/9812059

- Meson mass modification in strange hadronic matter (1999)
- We investigate in stable strange hadronic matter (SHM) the modifica- tion of the masses of the scalar (sigma,sigma') and the vector (omega,phi) mesons. The baryon ground state is treated in the relativistic Hartree approximation in the nonlinear sigma-omega and linear sigma'- phi model. In stable SHM, the masses of all the mesons reveal considerable reduction due to large vacuum polarization contribution from the hyperons and small density dependent effects caused by larger binding. PACS: 21.65+f, 24.10Jv

- Metastable quark-antiquark droplets within the Nambu-Jona-Lasinio model (1998)
- Chemically non equilibrated quark antiquark matter is studied within the Nambu Jona-Lasinio model. The equations of state of non strange (q = u, d) and strange (q = s) qq systems are calculated in the mean field approximation. The existence of metastable bound states with zero pressure is predicted at finite densities and temperatures T 50 MeV. It is shown that the minimum energy per particle occurs for symmetric systems, with equal densities of quarks and antiquarks. At T = 0 these metastable states have quark number densities of about 0.5 fm 3 for q = u, d and of 1 fm 3 for q = s. A first order chiral phase transition is found at finite densities and temperatures. The critical temperature for this phase transition is approximately 75 MeV (90 MeV) for the non strange (strange) baryon free quark antiquark matter. For realistic choices of parameters, the model does not predict a phase transition in chemically equilibrated systems. Possible decay channels of the metastable qq droplets and their signatures in relativistic heavy ion collisions are discussed.