### Refine

#### Year of publication

#### Document Type

- Article (183)
- Preprint (157)
- Working Paper (1)

#### Keywords

- Kollisionen schwerer Ionen (28)
- heavy ion collisions (22)
- Kollisionen schwerer Ionen (12)
- heavy ion collisions (11)
- Quark-Gluon-Plasma (10)
- Quark Gluon Plasma (8)
- QGP (7)
- UrQMD (7)
- equation of state (7)
- quark-gluon plasma (7)

#### Institute

- Physik (341) (remove)

- Non-trivial fixed points of the scalar field theory (2006)
- The phase structure of the scalar field theory with arbitrary powers of the gradient operator and a local non-analytic potential is investigated by the help of the RG in Euclidean space. The RG equation for the generating function of the derivative part of the action is derived. Infinitely many non-trivial fixed points of the RG transformations are found. The corresponding effective actions are unbounded from below and do probably not exhibit any particle content. Therefore they do not provide physically sensible theories.

- Pion and thermal photon spectra as a possible signal for a phase transition (2005)
- We calculate thermal photon and neutral pion spectra in ultrarelativistic heavy-ion collisions in the framework of three-fluid hydrodynamics. Both spectra are quite sensitive to the equation of state used. In particular, within our model, recent data for S + Au at 200 AGeV can only be understood if a scenario with a phase transition (possibly to a quark-gluon plasma) is assumed. Results for Au+Au at 11 AGeV and Pb + Pb at 160 AGeV are also presented.

- Effect of isovector-scalar meson on neutron star matter in strong magnetic fields (2005)
- We study the effects of isovector-scalar meson delta on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the delta-field leads to a remarkable splitting of proton and neutron effective masses. The strength of delta-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at B < 10^15G but becomes softer at stronger magnetic field after including the delta-field. The AMM terms can affect the system merely at ultrastrong magnetic field(B > 10^19G). In the range of 10^15 G - 10^18 G the properties of neutron-star matter are found to be similar with those without magnetic fields.

- Potential energy surfaces for cluster emitting nuclei (2005)
- Potential energy surfaces are calculated by using the most advanced asymmetric two-center shell model allowing to obtain shell and pairing corrections which are added to the Yukawa-plus-exponential model deformation energy. Shell effects are of crucial importance for experimental observation of spontaneous disintegration by heavy ion emission. Results for 222Ra, 232U, 236Pu and 242Cm illustrate the main ideas and show for the first time for a cluster emitter a potential barrier obtained by using the macroscopic-microscopic method.

- Critical line of the deconfinement phase transition (2005)
- Phase diagram of strongly interacting matter is discussed within the exactly solvable statistical model of the quark-gluon bags. The model predicts two phases of matter: the hadron gas at a low temperature T and baryonic chemical potential muB, and the quark-gluon gas at a high T and/or muB. The nature of the phase transition depends on a form of the bag mass-volume spectrum (its pre-exponential factor), which is expected to change with the muB/T ratio. It is therefore likely that the line of the 1st} order transition at a high muB/T ratio is followed by the line of the 2nd order phase transition at an intermediate muB/T, and then by the lines of "higher order transitions" at a low muB/T.

- Antibaryons bound in nuclei (2004)
- We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (B = p, , etc.). The properties of such systems are described within the relativistic mean field model by employing G parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4He to 208Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable e ects remain even after the antibaryon coupling constants are reduced by factor 3 4 compared to G parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q values, the in medium annihilation rates should be strongly suppressed leading to relatively long lived antibaryon nucleus systems. Multi nucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound B + A systems in pA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing multi quark antiquark clusters is discussed. PACS numbers: 25.43.+t, 21.10.-k, 21.30.Fe, 21.80.+a

- Analytical relationship for the cranking inertia (2004)
- The wave function of a spheroidal harmonic oscillator without spin-orbit interaction is expressed in terms of associated Laguerre and Hermite polynomials. The pairing gap and Fermi energy are found by solving the BCS system of two equations. Analytical relationships for the matrix elements of inertia are obtained function of the main quantum numbers and potential derivative. They may be used to test complex computer codes one should develop in a realistic approach of the fission dynamics. The results given for the 240 Pu nucleus are compared with a hydrodynamical model. The importance of taking into account the correction term due to the variation of the occupation number is stressed.

- Complex fission phenomena (2004)
- Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined.

- Deformation energy minima at finite mass asymmetry (2004)
- A very general saddle point nuclear shape may be found as a solution of an integro-differential equation without giving apriori any shape parametrization. By introducing phenomenological shell corrections one obtains minima of deformation energy for binary fission of parent nuclei at a finite (non-zero) mass asymmetry. Results are presented for reflection asymmetric saddle point shapes of thorium and uranium even-mass isotopes with A=226-238 and A=230-238 respectively.

- GEANT4 : a simulation toolkit (2003)
- Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 23