### Refine

#### Year of publication

- 1996 (14) (remove)

#### Keywords

- Kollisionen schwerer Ionen (3)
- heavy ion collisions (3)
- QCD (2)
- Quanten-Chromodynamik (2)
- Kern-Kern Kollision (1)
- Kernmaterie (1)
- QCD (1)
- QGP (1)
- QGP (1)
- Quantum Chromodynamic (1)

#### Institute

- Physik (14) (remove)

- Channeling process in a bent crystal (1996)
- We have investigated the channeling process of charged particles in a bent crystal. Invoking simple assumptions we derive a criterion, which determines whether channeling occurs or not. We obtain the same criterion using the Dirac equation. It is shown that the centrifugal force acting on the particle in the bent crystal significantly alters the effective transverse potential. The cases of axial and planar channeling are considered. The channeling probability and the dechanneling probability due to tunneling of the particle under the barrier in the effective transverse potential are estimated. These probabilities depend on the specific scaling parameter characterizing the process. Using the quasiclassical theory of synchrotron radiation we have calculated the contribution to the radiation spectrum, which arises due to the curvature of the channel. This contribution becomes significant to TeV electrons or positrons. Some practical consequences of our results are briefly discussed.

- Self-energy correction to the hyperfine structure splitting of hydrogenlike atoms (1996)
- A first testing ground for QED in the combined presence of a strong Coulomb field and a strong magnetic field is provided by the precise measurement of the hyperfine structure splitting of hydrogenlike 209Bi. We present a complete calculation of the one-loop self-energy correction to the first-order hyperfine interaction for various nuclear charges. In the low-Z regime we almost perfectly agree with the Z alpha expansion, but for medium and high Z there is a substantial deviation.

- Prospects for parity-nonconservation experiments with highly charged heavy ions (1996)
- We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

- Cold fission as cluster decay with dissipation (1996)
- For cold (neutronless) fission we consider an analytical model of quantum tunneling with dissipation through a barrier U(q) evaluated with a M3Y nucleon-nucleon force. We calculate the tunneling spectrum, i.e., the fission rate as a function of the total kinetic energy of the fragments. The theoretical results are compared with the experimental data obtained for the fine structure of two cold fission modes of 252Cf: 148Ba+104Mo and 146Ba+106Mo. Taking into account the dissipative coupling of the potential function U(q) and of the momentum p with all the other neglected coordinates, we obtain a remarkable agreement with the experimental data. We conclude that the cold fission process is a spontaneous decay with a spectrum determined by the shape of the barrier and an amplitude depending on the strength of the dissipative coupling.

- Quasi-continuous symmetries of non-Lie type (1996)
- We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the non-commutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrodinger equation for a free particle is investigated in such a non-commutative plane and a connection with anyonic statistics is found. PACS: 03.65.Fd, 11.30.Er

- Nucleus-nucleus collisions at highest energies (1996)
- The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.

- Neural networks for impact parameter determination (1996)
- Abstract: An accurate impact parameter determination in a heavy ion collision is crucial for almost all further analysis. The capabilities of an artificial neural network are investigated to that respect. A novel input generation for the network is proposed, namely the transverse and longitudinal momentum distribution of all outgoing (or actually detectable) particles. The neural network approach yields an improvement in performance of a factor of two as compared to classical techniques. To achieve this improvement simple network architectures and a 5 × 5 input grid in (pt, pz) space are suffcient.

- Phase transition in the chiral sigma-omega model with dilatons (1996)
- We investigate the properties of di erent modifications to the linear -model (including a dilaton field associated with broken scale invariance) at finite baryon density and nonzero temperature T. The explicit breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows to lower the compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for the wide range of stability of the normal phase in the (µ, T)-plane. The abnormal solution becomes not only energet- ically preferable to the normal state at high temperature or density, but also mechanically stable due to the inclusion of dilatons. PACS number:12.39.F

- Nuclear clusters as a probe for expansion flow in heavy ion reactions at 10-A/GeV - 15-A/GeV. (1996)
- A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulderarm shape and di erent inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear bounce-o event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields particularly at low pt at midrapidities and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.

- Particle production by time-dependent meson fields in relativistic heavy ion-collisions (1996)
- According to the Walecka mean field theory of nuclear interaction the collective mutual deceleration of the colliding nuclei gives rise to the bremsstrahlung of real and virtual ! mesons. It is shown that decays of these mesons may give a noticeable contribution to the observed yields of the baryon antibaryon pairs, dileptons and pions. Excitation functions and rapidity distributions of particles produced by this mechanism are calculated under some simplifying assumptions about the space time variation of meson fields in nuclear collisions. The calculated multiplicities of coherently produced particles grow fast with the bombarding energy, reaching a saturation above the RHIC bombarding energy. In the case of central Au+Au collisions the bremsstrahlung mechanism becomes comparable with particle production in incoherent hadron hadron collisions above the AGS energies. The rapidity spectra of antibaryons and pions exhibit a characteristic two hump structure which is a consequence of incomplete projectile target stopping at the initial stage of the reaction. The predicted distribution of e+e pairs has a strong peak at invariant masses Me+e < 0.5 GeV.