### Refine

#### Year of publication

- 1994 (11) (remove)

#### Document Type

- Article (11) (remove)

#### Keywords

- Kollisionen schwerer Ionen (3)
- heavy ion collisions (3)
- Kollisionen schwerer Ionen (2)
- heavy ion collisions (2)
- BEVALAC (1)
- Baryon Resonance (1)
- Baryon-Resonanz (1)
- Bremsstrahlung (1)
- EOS (1)
- EOS (1)

#### Institute

- Vacuum-polarization contribution to the hyperfine-structure splitting of hydrogenlike atoms (1994)
- A calculation of the vacuum-polarization contribution to the hyperfine splitting for hydrogenlike atoms is presented. The extended nuclear charge distribution is taken into account. For the experimentally interesting case 209Bi82+ we predict a delta-lambda- -1.6 nm shift for the transition wavelength of the ground-state hyperfine splitting.

- Induced decay of composite JPC=1++ particles in atomic Coulomb fields (1994)
- The electron-positron pairs observed in heavy-ion collisions at Gesellschaft für Schwerionen-forschung Darmstadt mbH have been interpreted as the decay products of yet unknown particles with masses around 1.8 MeV. The negative results of resonant Bhabha scattering experiments, however, do not support such an interpretation. Therefore we focus on a more complex decay scenario, where the e+e- lines result from a two-collision process. We discuss the induced decay of a metastable 1++ state into e+e- pairs. For most realizations of a 1++ state such a decay in leading order can only take place in the Coulomb field of a target atom. This fact has the attractive consequence that for such a state the Bhabha bounds are no longer valid. However, the absolute value of the e+e- production cross section turns out to be unacceptably small.

- Photon-photon interaction in axial channeling (1994)
- We investigate the possibility that high-energy photons are channeled, when passing through an oriented single crystal, due to Delbrück scattering. For this purpose the exact electron propagator for the single-string model is constructed. Starting from a separation of variables, we solve the Dirac equation for a cylindrical electrostatic potential. The propagator for such external fields is constructed from solutions of the radial Dirac equation. This propagator is applied to a calculation of the S matrix for Delbrück scattering. We specify the conditions under which photon channeling takes place. Unfortunately these conditions are only matched for a very small fraction of those photons being produced by channeled electrons.

- Physics of high-energy heavy-ion collisions (1994)
- This a review of the present status of heavy-ion collisions at intermediate energies. The main goal of heavy-ion physics in this energy regime is to shed some light on the nuclear equation of state (EOS), hence we present the basic concept of the EOS in nuclear matter as well as of nuclear shock waves which provide the key mechanism for the compression of nuclear matter. The main part of this article is devoted to the models currently used for describing heavy-ion reactions theoretically and to the observables useful for extracting information about the EOS from experiments. A detailed discussion of the flow effects with a broad comparison with the avaible data is presented. The many-body aspects of such reactions are investigated via the multifragmentation break up of excited nuclear systems and a comparison of model calculations with the most recent multifragmentation experiments is presented.

- High pT pions as probes of the dense phase of relativistic heavy ion collisions (1994)
- The properties of pions from the hot and dense reaction stage of relativistic heavy ion collisions are investigated with the quantum molecular dynamics model. Pions originating from this reaction stage stem from resonance decay with enhanced mass. They carry high transverse momenta. The calculation shows a direct correlation between high pt pions, early freeze-out times and high freeze-out densities.

- "Antiflow" of antiprotons in heavy ion collisions (1994)
- In the framework of the relativistic quantum dynamics approach we investigate antiproton observables in Au-Au collisions at 10.7A GeV. The rapidity dependence of the in-plane directed transverse momentum p(y) of p's shows the opposite sigh of the nucleon flow, which has indeed recently been discovered at 10.7A GeV by the E877 group. The "antiflow" of p's is also predicted at 2A GeV and at 160 A GeV and appears at all energies also for pi's and K's. These predicted p anticorrelations are a direct proof of strong p annihilation in massive heavy ion reactions.

- Monte Carlo model for multiparticle production at ultrarelativistic energies (1994)
- The Monte Carlo parton string model for multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies is described. An adequate choice of the parameters in the model gives the possibility of recovering the main results of the dual parton model, with the advantage of treating both hadron and nuclear interactions on the same footing, reducing them to interactions between partons. Also the possibility of considering both soft and hard parton interactions is introduced.

- Observable consequences of chemical equilibration in energetic heavy ion collisions (1994)
- The quantum statistical model (QSM) is used to calculate nuclear fragment distributions in chemical equilibrium. Several observable isotopic effects are predicted for intermediate energy heavy ion collisions. It is demonstrated that particle ratios for different systemsdo not depend on the breakup density-the only free parameter in our model.The importance of entropy measurements is discussed. Specific particle ratios for the system Au-Au are predicted, which can be used to determine the chemical potentials of the hot midrapidity fragment source in nearly central heavy ion collisions. Pacs-Nr. 25.70 Pq

- Neural networks for impact parameter determination (1994)
- Accurate impact parameter determination in a heavy-ion collision is crucial for almost all further analysis. We investigate the capabilities of an artificial neural network in that respect. First results show that the neural network is capable of improving the accuracy of the impact parameter determination based on observables such as the flow angle, the average directed inplane transverse momentum and the difference between transverse and longitudinal momenta. However, further investigations are necessary to discover the full potential of the neural network approach.

- Subthreshold kaons would reveal density isomers (1994)
- If density isomers exist they can be detected by measuring the excitation function of subthreshold kaon production. When the system reaches the density where the density isomer has influence on the equation of state (which depends on the beam energy and on the optical potential), we observe a jump in the cross section of the kaons whereas other observables change little. Above threshold Λ¯’s or p¯’s may be used to continue the search. This is the result of microscopic Boltzman-Uehling-Uhlenbeck calculations.