- Blood levels of Glial Fibrillary Acidic Protein (GFAP) in patients with neurological diseases (2013)
- Background and Purpose: The brain-specific astroglial protein GFAP is a blood biomarker candidate indicative of intracerebral hemorrhage in patients with symptoms suspicious of acute stroke. Comparably little, however, is known about GFAP release in other neurological disorders. In order to identify potential “specificity gaps” of a future GFAP test used to diagnose intracerebral hemorrhage, we measured GFAP in the blood of a large and rather unselected collective of patients with neurological diseases. Methods: Within a one-year period, we randomly selected in-patients of our university hospital for study inclusion. Patients with ischemic stroke, transient ischemic attack and intracerebral hemorrhage were excluded. Primary endpoint was the ICD-10 coded diagnosis reached at discharge. During hospital stay, blood was collected, and GFAP plasma levels were determined using an advanced prototype immunoassay at Roche Diagnostics. Results: A total of 331 patients were included, covering a broad spectrum of neurological diseases. GFAP levels were low in the vast majority of patients, with 98.5% of cases lying below the cut-off that was previously defined for the differentiation of intracerebral hemorrhage and ischemic stroke. No diagnosis or group of diagnoses was identified that showed consistently increased GFAP values. No association with age and sex was found. Conclusion: Most acute and chronic neurological diseases, including typical stroke mimics, are not associated with detectable GFAP levels in the bloodstream. Our findings underline the hypothesis that rapid astroglial destruction as in acute intracerebral hemorrhage is mandatory for GFAP increase. A future GFAP blood test applied to identify patients with intracerebral hemorrhage is likely to have a high specificity.
- The perfect crime? : CCSVI not leaving a trace in MS (2011)
- Background: Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system, believed to be triggered by an autoimmune reaction to myelin. Recently, a fundamentally different pathomechanism termed ‘chronic cerebrospinal venous insufficiency’ (CCSVI) was proposed, provoking significant attention in the media and scientific community. Methods: Twenty MS patients (mean age 42.2±13.3 years; median Extended Disability Status Scale 3.0, range 0–6.5) were compared with 20 healthy controls. Extra- and intracranial venous flow direction was assessed by colour-coded duplex sonography, and extracranial venous cross-sectional area (VCSA) of the internal jugular and vertebral veins (IJV/VV) was measured in B-mode to assess the five previously proposed CCSVI criteria. IJV-VCSA≤0.3 cm2 indicated ‘stenosis,’ and IJV-VCSA decrease from supine to upright position ‘reverted postural control.’ The sonographer, data analyser and statistician were blinded to the patient/control status of the participants. Results: No participant showed retrograde flow of cervical or intracranial veins. IJV-VCSA≤0.3 cm2 was found in 13 MS patients versus 16 controls (p=0.48). A decrease in IJV-VCSA from supine to upright position was observed in all participants, but this denotes a physiological finding. No MS patient and one control had undetectable IJV flow despite deep inspiration (p=0.49). Only one healthy control and no MS patients fulfilled at least two criteria for CCSVI. Conclusions: This triple-blinded extra- and transcranial duplex sonographic assessment of cervical and cerebral veins does not provide supportive evidence for the presence of CCSVI in MS patients. The findings cast serious doubt on the concept of CCSVI in MS.