### Refine

#### Keywords

- Kollision (2)
- collision (2)
- Charm Produktion (1)
- Charmonium (1)
- Drell-Yan (1)
- Drell-Yan ratio (1)
- J/psi Erhöhung (1)
- J/psi Unterdrückung (1)
- J/psi enhancement (1)
- J/psi mesons (1)

#### Institute

- Second cluster integral and excluded volume effects for the pion gas (2000)
- The quantum mechanical formula for Mayer s second cluster integral for the gas of relativistic particles with hard-core interaction is derived. The proper pion volume calculated with quantum mechanical formula is found to be an order of magnitude larger than its classical evaluation. The second cluster integral for the pion gas is calculated in quantum mechanical approach with account for both attractive and hard-core repulsive interactions. It is shown that, in the second cluster approximation, the repulsive -interactions as well as the finite width of resonances give important but almost canceling contributions. In contrast, an appreciable deviation from the ideal gas of pions and pion resonances is observed beyond the second clus- ter approximation in the framework of the Van der Waals excluded-volume model.

- Statistical coalescence model with exact charm conservation (2001)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.

- Open charm enhancement in Pb + Pb collisions at SPS (2000)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield. We find a strong enhancement of the open charm production, by a factor of about 2 4, over the standard hard-collision model extrapolation from nucleon-nucleon to nucleus-nucleus collisions. A possible mechanism of the open charm enhancement in A+A collisions at the SPS energies is proposed.

- Phase transition in hot pion matter (2000)
- The equation of state for the pion gas is analyzed within the third virial approximation. The second virial coeffcient is found from the pi pi -scattering data, while the third one is considered as a free parameter. The proposed model leads to a first-order phase transition from the pion gas to a more dense phase at the temperature Tpt < 136 MeV. Due to relatively low temperature this phase transition cannot be related to the deconfinement. This suggests that a new phase of hadron matter hot pion liquid may exist.

- Open and hidden charm production in heavy ion collisions at ultrarelativistic energies (2001)
- We consider the production of the open charm and J/psi mesons in heavy ion collisions at BNL RHIC. We discuss several recently developed pictures for J/psi production and argue that a measurement at RHIC energies is crucial for disentangling these di erent descriptions.

- J / psi suppression and enhancement in Au + Au collisions at the BNL RHIC (2001)
- We consider the production of the J/psi mesons in heavy ion collisions at RHIC energies in the statistical coalescence model with an exact (canonical ensemble) charm conservation. The cc quark pairs are assumed to be created in the primary hard parton collisions, but the formation of the open and hidden charm particles takes place at the hadronization stage and follows the prescription of statistical mechanics. The dependence of the J/psi production on both the number of nucleon participants and the collision energy is studied. The model predicts the J/psi suppression for low energies, whereas at the highest RHIC energy the model reveals the J/psi enhancement.

- Open and hidden charm production in heavy-ion collisions at ultrarelativistic energies (2002)
- We consider the production of the open charm and J/psi mesons in heavy-ion collisions at BNL RHIC. We discuss several recently developed pictures for J/psi production and argue that a measurement at RHIC energies is crucial for disentangling these different descriptions.

- Statistical coalescence model analysis of J / psi production in Pb + Pb collisions at 158 A GeV (2001)
- Production of J/psi mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experi- mental data of the NA50 Collaboration for Pb+Pb collisions at 158 A·GeV in a wide centrality range, including the so called anomalous suppression domain. The model description of the J/ psi data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.

- Comment to 'The Dependence of the anomalous J / psi suppression on the number of participant nucleons' (2002)
- The recently published experimental dependence of the J/psi suppression pattern in Pb+Pb collisions at the CERN SPS on the energy of zero degree calorimeter EZDC are analyzed. It is found that the data obtained within the minimum bias analysis (using theoretical Drell-Yan ) are at variance with the previously published experimental dependence of the same quantity on the transversal energy of neutral hadrons ET . The discrepancy is related to the moderate centrality region: 100 << Np << 200 (Np is the number of nucleon participants). This could result from systematic experimental errors in the minimum bias sample. A possible source of the errors may be contamination of the minimum bias sample by o -target interactions. The data obtained within the standard analysis (using measured Drell-Yan multiplicity) are found to be much less sensitive to the contamination.

- The high E(T) drop of J / psi to Drell-Yan ratio from the statistical c anti-c coalescence model (2002)
- The dependence of the J/psi yield on the transverse energy ET in heavy ion collisions is considered within the statistical c¯c coalescence model. The model fits the NA50 data for Pb+Pb collisions at the CERN SPS even in the high-ET region (ET >< 100 GeV). Here ET -fluctuations and ET -losses in the dimuon event sample naturally create the celebrated drop in the J/psi to Drell-Yan ratio.