Refine
Year of publication
Keywords
- invasion (4)
- differentiation (3)
- p21 (3)
- preeclampsia (3)
- Asphyxia (2)
- Aurora A (2)
- CDKN1A (2)
- COVID-19 (2)
- Cesarean section (2)
- Labor and delivery (2)
Institute
- Medizin (29)
- Sportwissenschaften (1)
- The effects of clinical hypnosis versus Neurolinguistic Programming (NLP) before External Cephalic Version (ECV) : a prospective off-centre randomised, double-blind, controlled trial (2012)
- Objective. To examine the effects of clinical hypnosis versus NLP intervention on the success rate of ECV procedures in comparison to a control group. Methods. A prospective off-centre randomised trial of a clinical hypnosis intervention against NLP of women with a singleton breech fetus at or after 370/7 (259 days) weeks of gestation and normal amniotic fluid index. All 80 participants heard a 20-minute recorded intervention via head phones. Main outcome assessed was success rate of ECV. The intervention groups were compared with a control group with standard medical care alone (n=122). Results. A total of 42 women, who received a hypnosis intervention prior to ECV, had a 40.5% (n=17), successful ECV, whereas 38 women, who received NLP, had a 44.7% (n=17) successful ECV (P > 0.05). The control group had similar patient characteristics compared to the intervention groups (P > 0.05). In the control group (n = 122) 27.3% (n = 33) had a statistically significant lower successful ECV procedure than NLP (P = 0.05) and hypnosis and NLP (P = 0.03). Conclusions. These findings suggest that prior clinical hypnosis and NLP have similar success rates of ECV procedures and are both superior to standard medical care alone.
- A lesson for cancer research : placental microarray gene analysis in preeclampsia (2012)
- Tumor progression and pregnancy share many common features, such as immune tolerance and invasion. The invasion of trophoblasts in the placenta into the uterine wall is essential for fetal development, and is thus precisely regulated. Its deregulation has been implicated in preeclampsia, a leading cause for maternal and perinatal mortality and morbidity. Pathogenesis of preeclampsia remains to be defined. Microarray-based gene profiling has been widely used for identifying genes responsible for preeclampsia. In this review, we have summarized the recent data from the microarray studies with preeclamptic placentas. Despite the complex of gene signatures, suggestive of the heterogeneity of preeclampsia, these studies identified a number of differentially expressed genes associated with preeclampsia. Interestingly, most of them have been reported to be tightly involved in tumor progression. We have discussed these interesting genes and analyzed their potential molecular functions in preeclampsia, compared with their roles in malignancy development. Further investigations are warranted to explore the involvement in molecular network of each identified gene, which may provide not only novel strategies for prevention and therapy for preeclampsia but also a better understanding of cancer cells. The trophoblastic cells, with their capacity for proliferation and differentiation, apoptosis and survival, migration, angiogenesis and immune modulation by exploiting similar molecular pathways, make them a compelling model for cancer research.
- Mitotic centromere-associated kinesin (MCAK) : a potential cancer drug target (2011)
- The inability to faithfully segregate chromosomes in mitosis results in chromosome instability, a hallmark of solid tumors. Disruption of microtubule dynamics contributes highly to mitotic chromosome instability. The kinesin-13 family is critical in the regulation of microtubule dynamics and the best characterized member of the family, the mitotic centromere-associated kinesin (MCAK), has recently been attracting enormous attention. MCAK regulates microtubule dynamics as a potent depolymerizer of microtubules by removing tubulin subunits from the polymer end. This depolymerizing activity plays pivotal roles in spindle formation, in correcting erroneous attachments of microtubule-kinetochore and in chromosome movement. Thus, the accurate regulation of MCAK is important for ensuring the faithful segregation of chromosomes in mitosis and for safeguarding chromosome stability. In this review we summarize recent data concerning the regulation of MCAK by mitotic kinases, Aurora A/B, Polo-like kinase 1 and cyclin-dependent kinase 1. We propose a molecular model of the regulation of MCAK by these mitotic kinases and relevant phosphatases throughout mitosis. An ever-increasing quantity of data indicates that MCAK is aberrantly regulated in cancer cells. This deregulation is linked to increased malignance, invasiveness, metastasis and drug resistance, most probably due to increased chromosomal instability and remodeling of the microtubule cytoskeleton in cancer cells. Most interestingly, recent observations suggest that MCAK could be a novel molecular target for cancer therapy, as a new cancer antigen or as a mitotic regulator. This collection of new data indicates that MCAK could be a new star in the cancer research sky due to its critical roles in the control of genome stability and the cytoskeleton. Further investigations are required to dissect the fine details of the regulation of MCAK throughout mitosis and its involvements in oncogenesis.
- Battle of the eternal rivals : restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy (2013)
- Polo-like kinase 1, a pivotal regulator of mitosis and cytokinesis, is highly expressed in a broad spectrum of tumors and its expression correlates often with poor prognosis, suggesting its potential as a therapeutic target. p53, the guardian of the genome, is the most important tumor suppressor. In this review, we address the intertwined relationship of these two key molecules by fighting each other as eternal rivals in many signaling pathways. p53 represses the promoter of Polo-like kinase 1, whereas Polo-like kinase 1 inhibits p53 and its family members p63 and p73 in cancer cells lacking functional p53. Plk1 inhibitors target all rapidly dividing cells irrespective of tumor cells or non-transformed normal but proliferating cells. Upon treatment with Plk1 inhibitors, p53 in tumor cells is activated and induces strong apoptosis, whereas tumor cells with inactive p53 arrest in mitosis with DNA damage. Thus, inactive p53 is not associated with a susceptible cytotoxicity of Polo-like kinase 1 inhibition and could rather foster the induction of polyploidy/aneuploidy in surviving cells. In addition, compared to the mono-treatment, combination of Polo-like kinase 1 inhibition with anti-mitotic or DNA damaging agents boosts more severe mitotic defects, effectually triggers apoptosis and strongly inhibits proliferation of cancer cells with functional p53. In this regard, restoration of p53 in tumor cells with loss or mutation of p53 will reinforce the cytotoxicity of combined Polo-like kinase 1 therapy and provide a proficient strategy for combating relapse and metastasis of cancer.
- Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells (2016)
- Polo-like kinase 1 (Plk1) has been established as one of the most promising targets for molecular anticancer intervention. In fact, various Plk1 inhibitors have been identified and characterized. While the data derived from the bench are prospective, the clinical outcomes are less encouraging by showing modest efficacy. One of the explanations for this discrepancy could be unintendedly targeting of non-malignant cells by Plk1 inhibitors. In this work, we have addressed the effect of Plk1 inhibition in adipose tissue-derived mesenchymal stem cells (ASCs). We show that both visceral and subcutaneous ASCs display monopolar spindles, reduced viability and strong apoptosis induction upon treatment with BI 2536 and BI 6727, the Plk1 kinase domain inhibitors, and with Poloxin, the regulatory Polo-box domain inhibitor. While Poloxin triggers quickly apoptosis, BI 2536 and BI 6727 result in mitotic arrest in ASCs. Importantly, survived ASCs exhibit DNA damage and a pronounced senescent phenotype. In addition, Plk1 inhibition impairs ASCs’ motility and homing ability. These results show that Plk1 inhibitors target slowly proliferating ASCs, an important population of anti-inflammation and immune modulation. The toxic effects on primary cells like ASCs could be partially responsible for the reported moderate antitumor activity in patients treated with Plk1 inhibitors.
- Primary cilia are dysfunctional in obese adipose-derived mesenchymal stem cells (2018)
- Adipose-derived mesenchymal stem cells (ASCs) have crucial functions, but their roles in obesity are not well defined. We show here that ASCs from obese individuals have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functionalities. Exposure to obesity-related hypoxia and cytokines shortens cilia of lean ASCs. Like obese ASCs, lean ASCs treated with interleukin-6 are deficient in the Hedgehog pathway, and their differentiation capability is associated with increased ciliary disassembly genes like AURKA. Interestingly, inhibition of Aurora A or its downstream target the histone deacetylase 6 rescues the cilium length and function of obese ASCs. This work highlights a mechanism whereby defective cilia render ASCs dysfunctional, resulting in diseased adipose tissue. Impaired cilia in ASCs may be a key event in the pathogenesis of obesity, and its correction might provide an alternative strategy for combating obesity and its associated diseases.
- Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis (2014)
- Proper bi-orientation of chromosomes is critical for the accurate segregation of chromosomes in mitosis. A key regulator of this process is MCAK, the mitotic centromere-associated kinesin. During mitosis the activity and localization of MCAK are regulated by mitotic key kinases including Plk1 and Aurora B. We show here that S621 in the MCAK’s C-terminal domain is the major phosphorylation site for Plk1. This phosphorylation regulates MCAK’s stability and facilitates its recognition by the ubiquitin/proteasome dependent APC/CCdc20 pathway leading to its D-box dependent degradation in mitosis. While phosphorylation of S621 does not directly affect its microtubule depolymerising activity, loss of Plk1 phosphorylation on S621 indirectly enhances its depolymerization activity in vivo by stabilizing MCAK, leading to an increased level of protein. Interfering with phosphorylation at S621 causes spindle formation defects and chromosome misalignments. Therefore, this study suggests a new mechanism by which Plk1 regulates MCAK: by regulating its degradation and hence controlling its turnover in mitosis.
- Maternal and neonatal outcome after vaginal breech delivery at term of children weighing more or less than 3.8 kg : a FRABAT prospective cohort study (2018)
- Introduction: The clinical management of breech presentations at term is still a controversially discussed issue among clinicians. Clear predictive criteria for planned vaginal breech deliveries are desperately needed to prevent adverse fetal and maternal outcomes and to reduce elective cesarean section rates. The green-top guideline considers an estimated birth weight of 3.8 kg or more an indication to plan a cesarean section despite the lack of respective evidence. Objective: To compare maternal and neonatal outcome of vaginal intended breech deliveries of births with children with a birth weight of 2.5 kg– 3.79 kg and children with a birth weight of 3.8 kg and more. Design: Prospective cohort study. Sample: All vaginal intended deliveries out of a breech position of newborns weighing between 2.5 kg and 4.5 kg at the Obstetrics department at Goethe University Hospital Frankfurt from January 2004 until December 2016 Methods: Neonatal and maternal outcome of a light weight group (LWG) (< 3.8 kg) was compared to and a high weight group (HWG) (≥ 3.8 kg) using Pearson’s Chi Square test and Fishers exact test. A logistic regression analysis was performed to detect an association between cesarean section rates, fetal outcome and the birth weight. Results: No difference in neonatal morbidity was detected between the HWG (1.8%, n = 166) and the LWG (2.6%, n = 888). Cesarean section rate was significantly higher in the HWG with 45.2% in comparison to 28.8% in the LWG with an odds ratio of 1.57 (95% CI 1.29–1.91, p<0.0001). In vaginal deliveries, a high birth weight was not associated with an increased risk of maternal birth injuries (LWG in vaginal deliveries: 74.3%, HWG in vaginal deliveries: 73.6%; p = 0.887; OR = 1.9 (95% CI 0.9–1.1)) Conclusion: A fetal weight above 3.79 kg does not predict increased maternal or infant morbidity after delivery from breech presentation at term. Neither the literature nor our analyses document evidence for threshold of estimated birth weight that is associated with maternal and/or infant morbidity. However, patients should be informed about an increased likelihood of cesarean sections during labor when attempting vaginal birth from breech position at term in order to reach an informed shared decision concerning the birth strategy. Further investigations in multi center settings are needed to advance international guidelines on vaginal breech deliveries in the context of estimated birth weight and its impact on perinatal outcome.
- Function of survivin in trophoblastic cells of the placenta (2013)
- Background: Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity worldwide and its pathogenesis is not totally understood. As a member of the chromosomal passenger complex and an inhibitor of apoptosis, survivin is a well-characterized oncoprotein. Its roles in trophoblastic cells remain to be defined. Methods: The placental samples from 16 preeclampsia patients and 16 well-matched controls were included in this study. Real-time PCR, immunohistochemistry and Western blot analysis were carried out with placental tissues. Primary trophoblastic cells from term placentas were isolated for Western blot analysis. Cell proliferation, cell cycle analysis and immunofluorescence staining were performed in trophoblastic cell lines BeWo, JAR and HTR-8/SVneo. Results: The survivin gene is reduced but the protein amount is hardly changed in preeclamptic placentas, compared to control placentas. Upon stress, survivin in trophoblastic cells is phosphorylated on its residue serine 20 by protein kinase A and becomes stabilized, accompanied by increased heat shock protein 90. Depletion of survivin induces chromosome misalignment, abnormal centrosome integrity, and reduced localization and activity of Aurora B at the centromeres/kinetochores in trophoblastic metaphase cells. Conclusions: Our data indicate that survivin plays pivotal roles in cell survival and proliferation of trophoblastic cells. Further investigations are required to define the function of survivin in each cell type of the placenta in the context of proliferation, differentiation, apoptosis, angiogenesis, migration and invasion.
- Prenatal ultrasound screening for fetal anomalies and outcomes in high-risk pregnancies due to maternal HIV infection : a retrospective study (2013)
- Objective: To assess the prevalence of prenatal screening and of adverse outcome in high-risk pregnancies due to maternal HIV infection. Study design: The prevalence of prenatal screening in 330 pregnancies of HIV-positive women attending the department for prenatal screening and/or during labour between January 1, 2002 and December 31, 2012, was recorded. Screening results were compared with the postnatal outcome and maternal morbidity, and mother-to-child transmission (MTCT) was evaluated. Results: One hundred of 330 women (30.5%) had an early anomaly scan, 252 (74.5%) had a detailed scan at 20–22 weeks, 18 (5.5%) had a detailed scan prior to birth, and three (0.9%) had an amniocentesis. In seven cases (2.12%), a fetal anomaly was detected prenatally and confirmed postnatally, while in eight (2.42%) an anomaly was only detected postnatally, even though a prenatal scan was performed. There were no anomalies in the unscreened group. MTCT occurred in three cases (0.9%) and seven fetal and neonatal deaths (2.1%) were reported. Conclusion: The overall prevalence of prenatal ultrasound screening in our cohort is 74.5%, but often the opportunity for prenatal ultrasonography in the first trimester is missed. In general, the aim should be to offer prenatal ultrasonography in the first trimester in all pregnancies. This allows early reassurance or if fetal disease is suspected, further steps can be taken.