- Mobile Air Quality Studies (MAQS) - an international project (2010)
- Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"- exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including including NO2, SO2, nanoparticles, and ozone.
- Association of IFNL3 rs12979860 and rs8099917 with biochemical predictors of interferon responsiveness in chronic hepatitis C virus infection (2013)
- Background & Aims: Genetic variations near the interferon lambda 3 gene (IFNL3, IL28B) are the most powerful predictors for sustained virologic response (SVR) in patients with chronic hepatitis C virus (HCV) infection, compared to other biochemical or histological baseline parameters. We evaluated whether the interplay of both IFNL3 polymorphisms rs12979860 and rs8099917 together with non-genetic clinical factors contributes to the predictive role of these genetic variants. Methods: The cohort comprised 1,402 patients of European descent with chronic HCV type 1 infection. 1,298 patients received interferon-based antiviral therapy, and 719 (55%) achieved SVR. The IFNL3 polymorphisms were genotyped by polymerase chain reaction and melting curve analysis. Results: A significant correlation was found between the IFNL3 polymorphisms and biochemical as well as virologic predictors of treatment outcome such as ALT, GGT, cholesterol, and HCV RNA levels. In multivariate regression analysis, IFLN3 SNPs, HCV RNA levels, and the GGT/ALT ratio were independent predictors of SVR. Dependent on the GGT/ALT ratio and on the HCV RNA concentration, significant variations in the likelihood for achieving SVR were observed in both, carriers of the responder as well as non-responder alleles. Conclusions: Our data support a clear association between IFNL3 genotypes and baseline parameters known to impact interferon responsiveness. Improved treatment outcome prediction was achieved when these predictors were considered in combination with the IFNL3 genotype.