Refine
Language
- English (12) (remove)
Keywords
- BMC (1)
- Bone defect (1)
- Bone regeneration (1)
- Cell therapy (1)
- Proximal humeral fracture (1)
- bone morphogenetic protein-2 (1)
- bone substitute material (1)
- rat femur defect (1)
- sonic hedgehog (1)
- three point bending test (1)
Institute
- Delayed wound repair in sepsis is associated with reduced local pro-inflammatory cytokine expression (2013)
- Sepsis is one of the main causes for morbidity and mortality in hospitalized patients. Moreover, sepsis associated complications involving impaired wound healing are common. Septic patients often require surgical interventions that in-turn may lead to further complications caused by impaired wound healing. We established a mouse model to the study delayed wound healing during sepsis distant to the septic focus point. For this reason cecal ligation and puncture (CLP) was combined with the creation of a superficial wound on the mouse ear. Control animals received the same procedure without CPL. Epithelialization was measured every second day by direct microscopic visualization up to complete closure of the wound. As interplay of TNF-α, TGF-β, matrix metalloproteinases (MMP), and tissue inhibitors of metalloproteinases (TIMP) is important in wound healing in general, TNF-α, TGF-β, MMP7, and TIMP1 were assessed immunohistochemical in samples of wounded ears harvested on days 2, 6, 10 and 16 after wounding. After induction of sepsis, animals showed a significant delay in wound epithelialization from day 2 to 12 compared to control animals. Complete wound healing was attained after mean 12.2± standard deviation (SD) 3.0 days in septic animals compared to 8.7± SD 1.7 days in the control group. Septic animals showed a significant reduction in local pro-inflammatory cytokine level of TNF-α on day 2 and day 6 as well as a reduced expression of TGF-β on day 2 in wounds. A significant lower expression of MMP7 as well as TIMP1 was also observed on day 2 after wounding. The induction of sepsis impairs wound healing distant to the septic focus point. We could demonstrate that expression of important cytokines for wound repair is deregulated after induction of sepsis. Thus restoring normal cytokine response locally in wounds could be a good strategy to enhance wound repair in sepsis.
- Human endothelial-like differentiated precursor cells maintain their endothelial characteristics when cocultured with mesenchymal stem cell and seeded onto human cancellous bone (2013)
- Introduction. Cancellous bone is frequently used for filling bone defects in a clinical setting. It provides favourable conditions for regenerative cells such as MSC and early EPC. The combination of MSC and EPC results in superior bone healing in experimental bone healing models. Materials and Methods. We investigated the influence of osteogenic culture conditions on the endothelial properties of early EPC and the osteogenic properties of MSC when cocultured on cancellous bone. Additionally, cell adhesion, metabolic activity, and differentiation were assessed 2, 6, and 10 days after seeding. Results. The number of adhering EPC and MSC decreased over time; however the cells remained metabolically active over the 10-day measurement period. In spite of a decline of lineage specific markers, cells maintained their differentiation to a reduced level. Osteogenic stimulation of EPC caused a decline but not abolishment of endothelial characteristics and did not induce osteogenic gene expression. Osteogenic stimulation of MSC significantly increased their metabolic activity whereas collagen-1α and alkaline phosphatase gene expressions declined. When cocultured with EPC, MSC’s collagen-1α gene expression increased significantly. Conclusion. EPC and MSC can be cocultured in vitro on cancellous bone under osteogenic conditions, and coculturing EPC with MSC stabilizes the latter’s collagen-1α gene expression.
- Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats (2012)
- Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
- Effect of sonic hedgehog/β-TCP composites on bone healing within the critical-sized rat femoral defect (2013)
- The creation of entirely synthetically derived bone substitute materials which are as effective as autologous bone grafts is desirable. Osteogenesis involves the concerted action of several proteins within a signaling cascade. Hedgehog proteins act upstream of this cascade, inducing the expression of various bone morphogenetic proteins (BMPs) and promoting physiological bone healing. Therefore, the hypothesis that hedgehog signaling in bone defects improves bone healing more than BMP signaling alone was tested. Recombinant N-terminal sonic hedgehog protein (N-SHh), BMP-2 or a combination of the two was added to β-tricalcium phosphate (β-TCP) and 5-mm femoral midshaft defects in nude rats were filled with these composites. The defects were stabilized with mini-plates. After eight weeks, the animals were sacrificed and the femora were explanted. The radiological evaluation was followed by a three-point bending test and histological examination. BMP-2/β-TCP composites showed a trend of increased stiffness compared with the controls (β-TCP without protein). N-SHh/β-TCP composites had lower stiffness compared with the control group and the N-SHh/BMP-2/β-TCP composites also had lower average stiffness compared with the controls (all not significant). Histomorphometry, however, revealed abundant cartilage and bone core formation in the N-SHh-composite groups. The sum of the new cartilage and bone was highest in the combination group N-SHh/BMP-2 (not significant). The addition of N-SHh to bone substitute materials appears to delay bone healing at the applied concentration and observation time but also showed a trend for higher amounts of ossifying cartilage.
- Safety and feasibility of cell-based therapy of autologous bone marrow-derived mononuclear cells in plate-stabilized proximal humeral fractures in humans (2016)
- BACKGROUND: Local implantation of ex vivo concentrated, washed and filtrated human bone marrow-derived mononuclear cells (BMC) seeded onto β-tricalciumphosphate (TCP) significantly enhanced bone healing in a preclinical segmental defect model. Based on these results, we evaluated in a first clinical phase-I trial safety and feasibility of augmentation with preoperatively isolated autologous BMC seeded onto β-TCP in combination with angle stable plate fixation for the therapy of proximal humeral fractures as a potential alternative to autologous bone graft from the iliac crest. METHODS: 10 patients were enrolled to assess whether cell therapy with 1.3 × 106 autologous BMC/ml/ml β-TCP, collected on the day preceding the definitive surgery, is safe and feasible when seeded onto β-TCP in patients with a proximal humeral fracture. 5 follow-up visits for clinical and radiological controls up to 12 weeks were performed. RESULTS: β-tricalciumphosphate fortification with BMC was feasible and safe; specifically, neither morbidity at the harvest site nor at the surgical wound site were observed. Neither local nor systemic inflammation was noted. All fractures healed within the observation time without secondary dislocation. Three adverse events were reported: one case each of abdominal wall shingles, tendon loosening and initial screw perforation, none of which presumed related to the IND. CONCLUSIONS: Cell therapy with autologous BMC for bone regeneration appeared to be safe and feasible with no drug-related adverse reactions being described to date. The impression of efficacy was given, although the study was not powered nor controlled to detect such. A clinical trial phase-II will be forthcoming in order to formally test the clinical benefit of BMC-laden β-TCP for PHF patients. Trial registration The study was registered in the European Clinical Trial Register as EudraCT No. 2012-004037-17. Date of registration 30th of August 2012. Informed consent was signed from all patients enrolled.
- Effects of electrical stimulation on rat limb regeneration, a new look at an old model (2015)
- Limb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded. One such attempt, in the early 1970s, used electrical stimulation and demonstrated partial limb regeneration. Several researchers reproduced these findings, applying low voltage DC electrical stimulation to the stumps of amputated rat forelimbs reporting "blastema, and new bone, bone marrow, cartilage, nerve, skin, muscle and epiphyseal plate formation". In spite of these encouraging results this research was discontinued. Recently there has been renewed interest in studying electrical stimulation, primarily at a cellular and subcellular level, and studies have demonstrated changes in stem cell behavior with increased proliferation, differentiation, matrix formation and migration, all important in tissue regeneration. We applied electrical stimulation, in vivo, to the stumps of amputated rat limbs and observed significant new bone, cartilage and vessel formation and prevention of neuroma formation. These findings demonstrate that electricity stimulates tissue regeneration and form the basis for further research leading to possible new treatments for regenerating limbs.
- Myeloid knockout of HIF-1α does not markedly affect hemorrhage/resuscitation-induced inflammation and hepatic injury (2014)
- Background: Hypoxia-inducible factor-1α (HIF-1α) and NF-κB play important roles in the inflammatory response after hemorrhagic shock and resuscitation (H/R). Here, the role of myeloid HIF-1α in liver hypoxia, injury, and inflammation after H/R with special regard to NF-κB activation was studied. Methods: Mice with a conditional HIF-1α knockout (KO) in myeloid cell-line and wild-type (WT) controls were hemorrhaged for 90 min ( mm Hg) and resuscitated. Controls underwent only surgical procedures. Results: After six hours, H/R enhanced the expression of HIF-1α-induced genes vascular endothelial growth factor (VEGF) and adrenomedullin (ADM). In KO mice, this was not observed. H/R-induced liver injury in HIF-1α KO was comparable to WT. Elevated plasma interleukin-6 (IL-6) levels after H/R were not reduced by HIF-1α KO. Local hepatic hypoxia was not significantly reduced in HIF-1α KO compared to controls after H/R. H/R-induced NF-κB phosphorylation in liver did not significantly differ between WT and KO. Conclusions: Here, deleting HIF-1α in myeloid cells and thereby in Kupffer cells was not protective after H/R. This data indicates that other factors, such as NF-κB, due to its upregulated phosphorylation in WT and KO mice, contrary to HIF-1α, are rather key modulators of inflammation after H/R in our model.
- Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes (2014)
- Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.
- Safety evaluation of a bioglass–polylactic acid composite scaffold seeded with progenitor cells in a rat skull critical-size bone defect (2014)
- Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation.
- High calcium bioglass enhances differentiation and survival of endothelial progenitor cells, inducing early vascularization in critical size bone defects (2013)
- Early vascularization is a prerequisite for successful bone healing and endothelial progenitor cells (EPC), seeded on appropriate biomaterials, can improve vascularization. The type of biomaterial influences EPC function with bioglass evoking a vascularizing response. In this study the influence of a composite biomaterial based on polylactic acid (PLA) and either 20 or 40% bioglass, BG20 and BG40, respectively, on the differentiation and survival of EPCs in vitro was investigated. Subsequently, the effect of the composite material on early vascularization in a rat calvarial critical size defect model with or without EPCs was evaluated. Human EPCs were cultured with β-TCP, PLA, BG20 or BG40, and seeding efficacy, cell viability, cell morphology and apoptosis were analysed in vitro. BG40 released the most calcium, and improved endothelial differentiation and vitality best. This effect was mimicked by adding an equivalent amount of calcium to the medium and was diminished in the presence of the calcium chelator, EGTA. To analyze the effect of BG40 and EPCs in vivo, a 6-mm diameter critical size calvarial defect was created in rats (n = 12). Controls (n = 6) received BG40 and the treatment group (n = 6) received BG40 seeded with 5×105 rat EPCs. Vascularization after 1 week was significantly improved when EPCs were seeded onto BG40, compared to implanting BG40 alone. This indicates that Ca2+ release improves EPC differentiation and is useful for enhanced early vascularization in critical size bone defects.