### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (3)
- QMD (2)
- Quantum Molecular Dynamics (2)
- heavy ion collisions (2)
- Kollisionen schwerer Ionen (1)
- Molekulare Dynamik (1)
- OMD (1)
- QGP (1)
- QGP (1)
- QMD (1)

#### Institute

- Dynamical treatment of Fermi motion in a microscopic description of heavy ion collisions (1992)
- A quasiclassical Pauli potential is used to simulate the Fermi motion of nucleons in a molecular dynamical simulation of heavy ion collisions. The thermostatic properties of a Fermi gas with and without interactions are presented. The inclusion of this Pauli potential into the quantum molecular dynamics (QMD) approach yields a model with well defined fermionic ground states, which is therefore also able to give the excitation energies of the emitted fragments. The deexcitation mechanisms (particle evaporation and multifragmentation) of the new model are investigated. The dynamics of the QMD with Pauli potential is tested by a wide range of comparisons of calculated and experimental double-differential cross sections for inclusive p-induced reactions at incident energies of 80 to 160 MeV. Results at 256 and 800 MeV incident proton energy are presented as predictions for completed experiments which are as yet unpublished.

- Observable consequences of chemical equilibration in energetic heavy ion collisions (1994)
- The quantum statistical model (QSM) is used to calculate nuclear fragment distributions in chemical equilibrium. Several observable isotopic effects are predicted for intermediate energy heavy ion collisions. It is demonstrated that particle ratios for different systemsdo not depend on the breakup density-the only free parameter in our model.The importance of entropy measurements is discussed. Specific particle ratios for the system Au-Au are predicted, which can be used to determine the chemical potentials of the hot midrapidity fragment source in nearly central heavy ion collisions. Pacs-Nr. 25.70 Pq

- On the impossibility of temperature extraction from heavy ion induced particle spectra (1995)
- Spectra of various particle species have been calculated with the Quantum Molecular Dynamics (QMD) model for very central collisions of Au+Au. They are compatible with the idea of a fully stopped thermal source which exhibits a transversal expansion besides the thermal distribution of an ideal gas. How- ever, the microscopic analyses of the local flow velocities and temperatures indicate much lower temperatures at densities associated with the freeze-out. The results express the overall impossibility of a model-independent determi- nation of nuclear temperatures from heavy ion spectral data, also at other energies (e.g. CERN) or for other species (i.e. pions, kaons, hyperons)

- Nucleus-nucleus collisions at highest energies (1996)
- The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.

- Microscopic calculations of stopping and flow from 160AMeV to 160AGeV (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.

- Extracting the equation of state from a microscopic non-equilibrium model (1996)
- We study the thermodynamic properties of infinite nuclear matter with the Ultrarelativistic Quantum Molecular Dynamics (URQMD), a semiclassical transport model, running in a box with periodic boundary conditions. It appears that the energy density rises faster than T4 at high temperatures of T approx. 200 - 300 MeV. This indicates an increase in the number of degrees of freedom. Moreover, We have calculated direct photon production in Pb+Pb collisions at 160 GeV/u within this model. The direct photon slope from the microscopic calculation equals that from a hydrodynamical calculation without a phase transition in the equation of state of the photon source.

- Collective flow in heavy ion reactions and the properties of excited nuclear matter (1996)
- Quantum Molecular Dynamics (QMD) calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the intermediate reaction stages show that the event shapes are more complex and that equilibrium is reached only in very special cases but not in event samples which cover a wide range of impact parameters as it is the case in experiments. The basic features of a new molecular dynamics model (UQMD) for heavy ion collisions from the Fermi energy regime up to the highest presently available energies are outlined.

- Signatures of dense hadronic matter in ultrarelativistic heavy ion reactions (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Dilepton spectra are calculated with and without shifting the rho pole. Except for S+Au collisions our calculations reproduce the CERES data.

- Microscopic analysis of thermodynamic parameters from 160 MeV/n - 160 GeV/n (1997)
- Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient "equilibrium" state remains ambiguous.

- Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions (1997)
- Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.