### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (11)
- Master's Thesis (4)
- Diplom Thesis (1)

#### Keywords

- point process (4)
- firing patterns (2)
- spike train (2)
- Approximation (1)
- Bayesian Inference (1)
- Branching particle systems (1)
- Brownian motion (1)
- Genealogical construction (1)
- Genealogische Konstruktion (1)
- Genetischer Fingerabdruck (1)

#### Institute

- Mathematik (13)
- Informatik und Mathematik (2)
- keine Angabe Institut (1)

- Stochastic models for near-synchronous neuronal firing activity (2006)
- It is commonly agreed that cortical information processing is based on the electric discharges (spikes') of nerve cells. Evidence is accumulating which suggests that the temporal interaction among a large number of neurons can take place with high precision, indicating that the efficiency of cortical processing may depend crucially on the precise spike timing of many cells. This work focuses on two temporal properties of parallel spike trains that attracted growing interest in the recent years: In the first place, specific delays (phase offsets') between the firing times of two spike trains are investigated. In particular, it is studied whether small phase offsets can be identified with confidence between two spike trains that have the tendency to fire almost simultaneously. Second, the temporal relations between multiple spike trains are investigated on the basis of such small offsets between pairs of processes. Since the analysis of all delays among the firing activity of n neurons is extremely complex, a method is required with which this highly dimensional information can be collapsed in a straightforward manner such that the temporal interaction among a large number of neurons can be represented consistently in a single temporal map. Finally, a stochastic model is presented that provides a framework to integrate and explain the observed temporal relations that result from the previous analyses.

- Poisson-Approximationen für genetische Fingerabdrücke (1999)
- Genetische Fingerabdrücke spielen außer in der Forensik und der medizinischen Diagnostik in vielen Fachrichtungen der Biologie eine wichtige Rolle...

- Particle systems with locally dependent branching : long-time behaviour, genealogy and critical parameters (2003)
- We consider the long-time behaviour of spatially extended random populations with locally dependent branching. We treat two classes of models: 1) Systems of continuous-time random walks on the d-dimensional grid with state dependent branching rate. While there are k particles at a given site, a branching event occurs there at rate s(k), and one of the particles is replaced by a random number of offspring (according to a fixed distribution with mean 1 and finite variance). 2) Discrete-time systems of branching random walks in random environment. Given a space-time i.i.d. field of random offspring distributions, all particles act independently, the offspring law of a given particle depending on its position and generation. The mean number of children per individual, averaged over the random environment, equals one The long-time behaviour is determined by the interplay of the motion and the branching mechanism: In the case of recurrent symmetrised individual motion, systems of the second type become locally extinct. We prove a comparison theorem for convex functionals of systems of type one which implies that these systems also become locally extinct in this case, provided that the branching rate function grows at least linearly. Furthermore, the analysis of a caricature model leads to the conjecture that local extinction prevails generically in this case. In the case of transient symmetrised individual motion the picture is more complex: Branching random walks with state dependent branching rate converge towards a non-trivial equilibrium, which preserves the initial intensity, whenever the branching rate function grows subquadratically. Systems of type 1) and systems of type 2) with quadratic branching rate function show very similar behaviour. They converge towards a non-trivial equilibrium if a conditional exponential moment of the collision time of two random walks of an order that reflects the variability in the branching mechanism is finite almost surely. The equilibrium population has finite variance of the local particle number if the corresponding unconditional exponential moment is finite. These results are proved by means of genealogical representations of the locally size-biased population. Furthermore, we compute the threshold values for existence of conditional exponential moments of the collision time of two random walks in terms of the entropy of the transition functions, using tools from large deviations theory. Our results prove in particular that - in contrast to the classical case of independent branching - there is a regime of equilibria with variance of the local number of particles.

- A stochastic model for the joint evaluation of burstiness and regularity in oscillatory spike trains (2013)
- The thesis provides a stochastic model to quantify and classify neuronal firing patterns of oscillatory spike trains. A spike train is a finite sequence of time points at which a neuron has an electric discharge (spike) which is recorded over a finite time interval. In this work, these spike times are analyzed regarding special firing patterns like the presence or absence of oscillatory activity and clusters (so called bursts). These bursts do not have a clear and unique definition in the literature. They are often fired in response to behaviorally relevant stimuli, e.g., an unexpected reward or a novel stimulus, but may also appear spontaneously. Oscillatory activity has been found to be related to complex information processing such as feature binding or figure ground segregation in the visual cortex. Thus, in the context of neurophysiology, it is important to quantify and classify these firing patterns and their change under certain experimental conditions like pharmacological treatment or genetical manipulation. In neuroscientific practice, the classification is often done by visual inspection criteria without giving reproducible results. Furthermore, descriptive methods are used for the quantification of spike trains without relating the extracted measures to properties of the underlying processes. For that reason, a doubly stochastic point process model is proposed and termed 'Gaussian Locking to a free Oscillator' - GLO. The model has been developed on the basis of empirical observations in dopaminergic neurons and in cooperation with neurophysiologists. The GLO model uses as a first stage an unobservable oscillatory background rhythm which is represented by a stationary random walk whose increments are normally distributed. Two different model types are used to describe single spike firing or clusters of spikes. For both model types, the distribution of the random number of spikes per beat has different probability distributions (Bernoulli in the single spike case or Poisson in the cluster case). In the second stage, the random spike times are placed around their birth beat according to a normal distribution. These spike times represent the observed point process which has five easily interpretable parameters to describe the regularity and the burstiness of the firing patterns. It turns out that the point process is stationary, simple and ergodic. It can be characterized as a cluster process and for the bursty firing mode as a Cox process. Furthermore, the distribution of the waiting times between spikes can be derived for some parameter combination. The conditional intensity function of the point process is derived which is also called autocorrelation function (ACF) in the neuroscience literature. This function arises by conditioning on a spike at time zero and measures the intensity of spikes x time units later. The autocorrelation histogram (ACH) is an estimate for the ACF. The parameters of the GLO are estimated by fitting the ACF to the ACH with a nonlinear least squares algorithm. This is a common procedure in neuroscientific practice and has the advantage that the GLO ACF can be computed for all parameter combinations and that its properties are closely related to the burstiness and regularity of the process. The precision of estimation is investigated for different scenarios using Monte-Carlo simulations and bootstrap methods. The GLO provides the neuroscientist with objective and reproducible classification rules for the firing patterns on the basis of the model ACF. These rules are inspired by visual inspection criteria often used in neuroscientific practice and thus support and complement usual analysis of empirical spike trains. When applied to a sample data set, the model is able to detect significant changes in the regularity and burst behavior of the cells and provides confidence intervals for the parameter estimates.

- Coalescent trees and their lengths (2014)
- The work presented in this thesis is devoted to two classes of mathematical population genetics models, namely the Kingman-coalescent and the Beta-coalescents. Chapters 2, 3 and 4 of the thesis include results concerned with the first model, whereas Chapter 5 presents contributions to the second class of models.

- Catastrophe modeling with a doubly stochastic process : Bayesian inference and applications (2015)
- This work proposes to employ the (bursty) GLO model from Bingmer et. al (2011) to model the occurrence of tropical cyclones. We develop a Bayesian framework to estimate the parameters of the model and, particularly, employ a Markov chain Monte Carlo algorithm. This also allows us to develop a forecasting framework for future events. Moreover, we assess the default probability of an insurance company that is exposed to claims that occur according to a GLO process and show that the model is able to substantially improve actuarial risk management if events occur in oscillatory bursts.

- Optimierung von Phasen- und Ratenparametern in einem stochastischen Modell neuronaler Feueraktivität (2014)
- In unserem Gehirn wird Information von Neuronen durch die Emission von Spikes repräsentiert. Als wichtige Signalkomponenten werden hierbei die Rate (Anzahl Spikes), die Phase (zeitliche Verschiebung der Spikes) und synchrone Oszillationen (rhythmische Entladungen der Neuronen am selben Zyklus) diskutiert. In dieser Arbeit wird untersucht, wie Rate und Phase für eine optimale Detektion miteinander kombiniert werden und abhängig vom gewählten Parameterbereich wird der Beitrag der Phase quantifiziert. Dies wird anhand eines stochastischen Spiketrain-Modell untersucht, das hohe Ähnlichkeiten zu empirischen Spiketrains zeigt und die drei genannten Signalkomponenten beinhaltet. Das ELO-Modell („exponential lockig to a free oscillator“) ist in zwei Prozessstufen unterteilt: Im Hintergrund steht ein globaler Oszillationsprozess, der unabhängige und normal-verteilte Intervallabschnitte hervorbringt (Oszillation). An den Intervallgrenzen starten unabhängig, inhomogene Poisson-Prozesse (Synchronizität) mit exponentiell abnehmender Feuerrate, die durch eine stimulusspezifische Rate und Phase festgelegt ist. Neben einer analytischen Bestimmung der optimalen Parameter im Falle reiner Raten- bzw. Phasencodierung, wird die gemeinsame Codierung anhand von Simulationsstudien analysiert.

- A multiple filter test for the detection of rate changes in renewal processes with varying variance (2014)
- The thesis provides novel procedures in the statistical field of change point detection in time series. Motivated by a variety of neuronal spike train patterns, a broad stochastic point process model is introduced. This model features points in time (change points), where the associated event rate changes. For purposes of change point detection, filtered derivative processes (MOSUM) are studied. Functional limit theorems for the filtered derivative processes are derived. These results are used to support novel procedures for change point detection; in particular, multiple filters (bandwidths) are applied simultaneously in oder to detect change points in different time scales.