### Refine

#### Keywords

- UrQMD (2)
- Boltzmann-Gleichung (1)
- Correlations (1)
- Dileptonen (1)
- Dileptons (1)
- FAIR (1)
- GPGPU (1)
- Große Extradimensionen (1)
- HBT (1)
- Hadron (1)

#### Institute

- Physik (12)
- Informatik und Mathematik (1)

- Refactoring the UrQMD model for many-core architectures (2013)
- Ultrarelativistic Quantum Molecular Dynamics is a physics model to describe the transport, collision, scattering, and decay of nuclear particles. The UrQMD framework has been in use for nearly 20 years since its first development. In this period computing aspects, the design of code, and the efficiency of computation have been minor points of interest. Nowadays an additional issue arises due to the fact that the run time of the framework does not diminish any more with new hardware generations. The current development in computing hardware is mainly focused on parallelism. Especially in scientific applications a high order of parallelisation can be achieved due to the superposition principle. In this thesis it is shown how modern design criteria and algorithm redesign are applied to physics frameworks. The redesign with a special emphasise on many-core architectures allows for significant improvements of the execution speed. The most time consuming part of UrQMD is a newly introduced relativistic hydrodynamic phase. The algorithm used to simulate the hydrodynamic evolution is the SHASTA. As the sequential form of SHASTA is successfully applied in various simulation frameworks for heavy ion collisions its possible parallelisation is analysed. Two different implementations of SHASTA are presented. The first one is an improved sequential implementation. By applying a more concise design and evading unnecessary memory copies, the execution time could be reduced to the half of the FORTRAN version’s execution time. The usage of memory could be reduced by 80% compared to the memory needed in the original version. The second implementation concentrates fully on the usage of many-core architectures and deviates significantly from the classical implementation. Contrary to the sequential implementation, it follows the recalculate instead of memory look-up paradigm. By this means the execution speed could be accelerated up to a factor of 460 on GPUs. Additionally a stability analysis of the UrQMD model is presented. Applying metapro- gramming UrQMD is compiled and executed in a massively parallel setup. The resulting simulation data of all parallel UrQMD instances were hereafter gathered and analysed. Hence UrQMD could be proven of high stability to the uncertainty of experimental data. As a further application of modern programming paradigms a prototypical implementa- tion of the worldline formalism is presented. This formalism allows for a direct calculation of Feynman integrals and constitutes therefore an interesting enhancement for the UrQMD model. Its massively parallel implementation on GPUs is examined.

- Dileptons and resonances as probes for hot and dense nuclear matter (2009)
- The thesis describes the possibilites to explore the hot and dense phase in heavy ion collisions. Therefore hadronic and leptonic decays of resonances are investigated.

- Direct photons in heavy ion collisions (2010)
- Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. In pure transport calculations, a viscous hadron gas is present. This is juxtaposed with ideal gases of hadrons with vacuum properties, hadrons which undergo a chiral and deconfinement phase transition and with a system that has a strong first-order phase transition to a deconfined ideal gas of quarks and gluons in the hybrid model calculations with the various Equations of State. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. The differences of photon emission rates from a thermalized transport box and the hadronic photon emission rates that are used in hydrodynamic calculations are found to be very similar, as are the spectra from calculations of heavy-ion collisions with transport model and hybrid model with hadronic Equation of State. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. The numerical investigations show that the parameter with the largest impact on the direct photon spectra is the time at which the hydrodynamic description is started. Its variation shows deviations of one to two orders of magnitude. In the regime that can be considered physical, however, the variation is less than a factor of 3. Other parameters change the direct photon yield by up to approximately 20%. In all systems that have been considered -- heavy-ion collisions at E_lab = 35 AGeV and 158 AGeV, (s_NN)**1/2 = 62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. Since non-soft photon sources are very much suppressed at this energy, experimental results should very easily be able to distinguish between a medium that is entirely hadronic and a system that undergoes a phase transition from partonic to hadronic matter. In the case of lead-lead collisions at 158 AGeV, the situation is not so clear. In central collisions, the complete direct photon spectra including prompt photons seem to favour hadronic emission sources, while the partonic calculations only slightly overpredict the data. In peripheral collisions at the same energy, the hadronic contribution is more than one order of magnitude smaller than the prompt photon contribution, which fits the available experimental data. A similar picture presents itself at higher energies. At RHIC energies, however, the difference between transport calculations and hadronic hybrid model calculations is largest. Hybrid model calculations with partonic degrees of freedom can describe the experimental results in gold-gold collisions at 200 GeV. The elliptic flow component of direct photon emission is found to be consistently positive at small transverse momenta. This means that the initial photon emission from a non-flowing medium does not completely overshine the emission patterns from later stages. High-pt photons dominantly come from the beginning of a heavy-ion collision and therefore do not carry the directed information of an evolving medium.

- Fluctuations in ultra-relativistic heavy-ion collisions from microscopic descriptions (2007)
- Quantum chromodynamics predicts the existence of a phase transition from hadronic to quark-gluon matter when temperature and pressure are sufficiently high. Colliding heavy nuclei at ultra-relativistic speeds allows to deposit large amounts of energy in a small volume of space, and is the only available experimental mean to produce the extreme conditions necessary to obtain the deconfined state. Numerous models and ideas were developed in the last decades to study heavy ion physics and understand the properties of extremely heated and compressed nuclear matter. With the ever increasing energy available in the center of mass frame (and thus number of particles produced) and the development of large acceptance detectors, it has become possible to study the fluctuations of physical quantities on an event-by-event basis, and access thermodynamical properties not present in particle spectra. The characteristics of the highly excited matter produced, e.g. thermalization, effect of resonance decay. . . can be investigated by fluctuation analyses. In fact, fluctuations are good indicators for a phase transition and a plethora of fluctuation probes have been proposed to pin down the existence and the properties of the QGP. We study various fluctuation quantities within the Ultra-relativistic Quantum Molecular Dynamics UrQMD and the quantum Molecular Dynamics qMD models. UrQMD is based on hadron and string degrees of freedom and allows to disentangle purely hadronic effects. In contrast, the qMD model includes an explicit transition from quark to hadronic matter and can serve to test adequate probes of the initial QGP state. We show that the qMD model can reasonably reproduce various experimental particles rapidity distributions and transverse mass spectra in wide energy range. Within the frame of the dynamical recombination procedure used in qMD, we study the enhancement of protons over pions (p/π) ratio in the intermediate pt range (1.5 < pt < 2.5). We show that qMD can reproduce the large p/π ≈ 1 observed experimentally at RHIC energies at hadronization. However, the subsequent decay of resonances makes the ratio fall to values incompatible with experimental data. We thus conclude that resonance decay might have a drastic influence on this observable in the quark recombination picture. Charged particles multiplicity fluctuations measured at SPS by the NA49 collaboration are enhanced in midperipheral events for Pb+Pb collisions at Elab = 160 AGeV. This feature is not reproduce by hadron-string transport approaches, which show a flat centrality dependence, within the proper experimental acceptance and with the proper centrality selection procedure. However, we show that the behavior of multiplicity fluctuations in transport codes is similar to the experimental result in full 4π acceptance. We identify the centrality selection procedure as the reason for the enhanced particle multiplicity fluctuations in midperipheral reactions and argue that it can be used to distinguish between different scenarios of particle productions. We show that experimental data might indicate a strong mixing of projectile and target related production sources. Strangeness over entropy K/π and baryon number over entropy p/π ratio fluctuations have been measured by the NA49 experiment in the SPS energy range, from Elab = 20 AGeV up to Elab = 160 AGeV. We investigate the sensitivity of this observable to kinematical cuts and discuss the influence of resonance decay. We find the dynamical p/π ratio fluctuations to increase with beam energy, in agreement with the measured data points. On the contrary, the dynamical K/π ratio fluctuations are essential flat as a function of centrality and depend only weakly on the kinematical cuts applied. Our results are in line with the simulations performed earlier by the NA49 collaboration in their detector acceptance filter. Finally, we focus on the correlations and fluctuations of conserved charges. It was proposed that these fluctuations are sensitive to the fractional charge carried by the quarks in the initial QGP stage and survive the whole course of heavy ion reactions. A crucial point is the influence of hadronization that may relax the initial QGP fluctuation/correlation signals to their hadronic values. We use the quark Molecular Dynamics qMD model to disentangle the effect of recombination-hadronization on charged particles ratio fluctuations, charge transfer fluctuations, baryon number-strangeness correlation coefficient and various ratios of susceptibilities (i.e. correlations over fluctuations). We find that the dynamical recombination procedure implemented in the qMD model destroys all studied initial QGP fluctuations and correlations and might ex- plain why no signal of a phase transition based on event-by-event fluctuations was found in the experimental data until now.

- Experimentelle Konsequenzen einer Minimalen Länge (2007)
- Es wird ein effektives Modell zur Berücksichtigung einer Minimalen Länge in der Quantenfeldtheorie vorgestellt. Im Falle der Existenz Großer Extradimensionen kann dies zu überprüfbaren Modifikationen verschiedener Experimente führen. Es werden verschiedene Phänomene wie z.B. der Casimir-Effekt, Neutrino-Nukleon-Reaktionen oder Neutrinooszillationen diskutiert.

- Black hole production and graviton emission in models with large extra dimensions (2007)
- This thesis studies the possible production of microscopical black holes and the emission of graviational radiation under the assumption of large extra dimensions. We derive observables for the Large Hadron Collider and for ultra high energetic cosmic rays.

- Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions (2014)
- In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/psi mesons, which is also investigated in this thesis.

- An integrated Boltzmann + hydrodynamics approach to heavy ion collisions (2009)
- In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. To model the dynamical evolution of the collective system assuming local thermal equilibrium ideal hydrodynamics seems to be a good tool. Nowadays, the development of either viscous hydrodynamic codes or hybrid approaches is favoured. For the microscopic description of the hadronic as well as the partonic stage of the evolution transport approaches have beeen successfully applied, since they generate the full phse-space dynamics of all the particles. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. It constitutes an effective solution of the relativistic Boltzmann equation and is restricted to binary collisions of the propagated hadrons. Therefore, the Boltzmann equation and the basic assumptions of this model are introduced. Furthermore, predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies and the new approach leads to reasonable results over the whole energy range. Studies of phase diagram trajectories using hydrodynamics are performed as a first move into the direction of the development of the hybrid approach. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The initial energy and baryon number density distributions are not smooth and not symmetric in any direction and the initial velocity profiles are non-trivial since they are generated by the non-equilibrium transport approach. The fulll (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. For the present work, three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. Either an in the computational frame isochronous freeze-out or an gradual freeze-out that mimics an iso-eigentime criterion. The particle vectors are generated by Monte Carlo methods according to the Cooper-Frye formula and UrQMD takes care of the final decoupling procedure of the particles. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic flow values at SPS energies are shown to be in line with an ideal hydrodynamic evolution if a proper initial state is used and the final freeze-out proceeds gradually. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent $v_2$ values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from $E_{\rm lab}=2-160A~$GeV. It is observed that the different freeze-out procedures have almost as much influence on the mean transverse mass excitation function as the equation of state. The experimentally observed step-like behaviour of the mean transverse mass excitation function is only reproduced, if a first order phase transition with a large latent heat is applied or the EoS is effectively softened due to non-equilibrium effects in the hadronic transport calculation. The HBT correlation of the negatively charged pion source created in central Pb+Pb collisions at SPS energies are investigated with the hybrid model. It has been found that the latent heat influences the emission of particles visibly and hence the HBT radii of the pion source. The final hadronic interactions after the hydrodynamic freeze-out are very important for the HBT correlation since a large amount of collisions and decays still takes place during this period.

- Nonequilibrium phase transitions in chiral fluid dynamics including dissipation and fluctuation (2011)
- Chiral fluid dynamics combines the fluid dynamic expansion of a hot and dense plasma created in a heavy-ion collision with the explicit propagation of fluctuations at the chiral phase transition of quantum chromodynamics. From systems in equilibrium long-range fluctuations are expected at a conjectured critical point. Heavy-ion collisions are, however, finite in size and time and very dynamic. It is thus likely that nonequilibrium effects diminish the signal of a critical point. They can, however, stimulate phenomena at a first order phase transitions, like nucleation and spinodal decomposition. Both of phase transition scenarios are investigated in this work. Based on the linear sigma model with constituent quarks a consistent quantum field theoretical approach using the two-particle irreducible effective action is developed to derive both, the local equilibrium properties of the expanding quark fluid and the damping and noise terms in the Langevin equation of the order parameter of the phase transition, the sigma field. Within this formalism it is possible to obtain a conserved energy-momentum tensor of the coupled system. It describes the energy dissipation from the sigma field to the heat bath during relaxation. Within this model we investigate nonequilibrium phenomena in a scenario with a critical point and a first order phase transition. We observe long relaxation times at the phase transition, phase coexistence at the first order phase transition and critical slowing down at the critical point. We find a substantial supercooling in a first order phase transition in our model and due to the energy-momentum exchange also reheating is present. While at the critical point the correlation length increases slightly we find an enhanced intensity of nonequilibrium fluctuations at the first order phase transition, which leads to an increased production of sigma mesons.