### Refine

#### Keywords

- Coding Scheme (1)
- Energy Efficiency (1)
- Erasure-Correcting Codes (1)
- GPGPU (1)
- GPU Computing (1)
- Green Computing (1)
- HPC (1)
- Lattice-QCD (1)
- Vectorization (1)

#### Institute

- Informatik (3) (remove)

- Conceptual design of an ALICE Tier-2 centre integrated into a multi-purpose computing facility (2012)
- This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

- An erasure-resilient and compute-efficient coding scheme for storage applications (2013)
- Driven by rapid technological advancements, the amount of data that is created, captured, communicated, and stored worldwide has grown exponentially over the past decades. Along with this development it has become critical for many disciplines of science and business to being able to gather and analyze large amounts of data. The sheer volume of the data often exceeds the capabilities of classical storage systems, with the result that current large-scale storage systems are highly distributed and are comprised of a high number of individual storage components. As with any other electronic device, the reliability of storage hardware is governed by certain probability distributions, which in turn are influenced by the physical processes utilized to store the information. The traditional way to deal with the inherent unreliability of combined storage systems is to replicate the data several times. Another popular approach to achieve failure tolerance is to calculate the block-wise parity in one or more dimensions. With better understanding of the different failure modes of storage components, it has become evident that sophisticated high-level error detection and correction techniques are indispensable for the ever-growing distributed systems. The utilization of powerful cyclic error-correcting codes, however, comes with a high computational penalty, since the required operations over finite fields do not map very well onto current commodity processors. This thesis introduces a versatile coding scheme with fully adjustable fault-tolerance that is tailored specifically to modern processor architectures. To reduce stress on the memory subsystem the conventional table-based algorithm for multiplication over finite fields has been replaced with a polynomial version. This arithmetically intense algorithm is better suited to the wide SIMD units of the currently available general purpose processors, but also displays significant benefits when used with modern many-core accelerator devices (for instance the popular general purpose graphics processing units). A CPU implementation using SSE and a GPU version using CUDA are presented. The performance of the multiplication depends on the distribution of the polynomial coefficients in the finite field elements. This property has been used to create suitable matrices that generate a linear systematic erasure-correcting code which shows a significantly increased multiplication performance for the relevant matrix elements. Several approaches to obtain the optimized generator matrices are elaborated and their implications are discussed. A Monte-Carlo-based construction method allows it to influence the specific shape of the generator matrices and thus to adapt them to special storage and archiving workloads. Extensive benchmarks on CPU and GPU demonstrate the superior performance and the future application scenarios of this novel erasure-resilient coding scheme.

- Energy- and cost-efficient Lattice-QCD computations using graphics processing units (2014)
- Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, perturbative methods can only be applied to QCD for high energies. Studies from first principles are possible via a discretization onto an Euclidean space-time grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio option outside of the high-energy regime. LQCD is extremely compute and memory intensive. In particular, it is by definition always bandwidth limited. Thus—despite the complexity of LQCD applications—it led to the development of several specialized compute platforms and influenced the development of others. However, in recent years General-Purpose computation on Graphics Processing Units (GPGPU) came up as a new means for parallel computing. Contrary to machines traditionally used for LQCD, graphics processing units (GPUs) are a massmarket product. This promises advantages in both the pace at which higher-performing hardware becomes available and its price. CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that was developed within this thesis. It operates on GPUs by all major vendors as well as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the fastest double-precision D= kernel for a single GPU, achieving 120GFLOPS. D=—the most compute intensive kernel in LQCD simulations—is commonly used to compare LQCD platforms. This performance is enabled by an in-depth analysis of optimization techniques for bandwidth-limited codes on GPUs. Further, analysis of the communication between GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov space solvers and linear scaling to multiple GPUs within a single system. LQCD calculations require a sampling of the phase space. The hybrid Monte Carlo (HMC) algorithm performs this. For this task, a single AMD Radeon HD 7970 GPU provides four times the performance of two AMD Opteron 6220 running an optimized reference code. The same advantage is achieved in terms of energy-efficiency. In terms of normalized total cost of acquisition (TCA), GPU-based clusters match conventional large-scale LQCD systems. Contrary to those, however, they can be scaled up from a single node. Examples of large GPU-based systems are LOEWE-CSC and SANAM. On both, CL2QCD has already been used in production for LQCD studies.