### Refine

#### Document Type

- Doctoral Thesis (7)
- Master's Thesis (3)
- Bachelor Thesis (1)
- Diplom Thesis (1)

#### Keywords

- Dynamical mean-field theory approach for ultracold atomic gases (2009)
- In this thesis we have studied the physics of different ultracold Bose-Fermi mixtures in optical lattices, as well as spin 1=2 fermions in a harmonic trap. To study these systems we generalized dynamical mean-field theory for a mixture of fermions and bosons, as well as for an inhomogeneous environment. Generalized dynamical mean-field theory (GDMFT) is a method that describes a mixture of fermions and bosons. This method consists of Gutzwiller mean-field for the bosons, and dynamical mean-field theory for the fermions, which are coupled on-site by the Bose-Fermi density-density interaction and possibly a Feshbach term which converts a pair of up and down fermions into a molecule, i.e. a boson. We derived the self-consistency equations and showed that this method is well-controlled in the limit of high lattice coordination number z. We develop real-space dynamical mean-field theory for studying systems in an inhomogeneous environment, e.g. in a harmonic trap. The crucial difference compared to standard DMFT is that we are taking into account that different sites are not equivalent to each other and thus take into account the inhomogeneity of the system. Different sites are coupled by the real-space Dyson equation. ...

- A numerical renormalization group approach to dissipative quantum impurity systems (2011)
- The miniaturization of electronics is reaching its limits. Structures necessary to build integrated circuits from semiconductors are shrinking and could reach the size of only a few atoms within the next few years. It will be at the latest at this point in time that the physics of nanostructures gains importance in our every day life. This thesis deals with the physics of quantum impurity models. All models of this class exhibit an identical structure: the simple and small impurity only has few degrees of freedom. It can be built out of a small number of atoms or a single molecule, for example. In the simplest case it can be described by a single spin degree of freedom, in many quantum impurity models, it can be treated exactly. The complexity of the description arises from its coupling to a large number of fermionic or bosonic degrees of freedom (large meaning that we have to deal with particle numbers of the order of 10^{23}). An exact treatment thus remains impossible. At the same time, physical effects which arise in quantum impurity systems often cannot be described within a perturbative theory, since multiple energy scales may play an important role. One example for such an effect is the Kondo effect, where the free magnetic moment of the impurity is screened by a "cloud" of fermionic particles of the quantum bath. The Kondo effect is only one example for the rich physics stemming from correlation effects in many body systems. Quantum impurity models, and the oftentimes related Kondo effect, have regained the attention of experimental and theoretical physicists since the advent of quantum dots, which are sometimes also referred to as as artificial atoms. Quantum dots offer a unprecedented control and tunability of many system parameters. Hence, they constitute a nice "playground" for fundamental research, while being promising candidates for building blocks of future technological devices as well. Recently Loss' and DiVincenzo's p roposal of a quantum computing scheme based on spins in quantum dots, increased the efforts of experimentalists to coherently manipulate and read out the spins of quantum dots one by one. In this context two topics are of paramount importance for future quantum information processing: since decoherence times have to be large enough to allow for good error correction schemes, understanding the loss of phase coherence in quantum impurity systems is a prerequisite for quantum computation in these systems. Nonequilibrium phenomena in quantum impurity systems also have to be understood, before one may gain control of manipulating quantum bits. As a first step towards more complicated nonequilibrium situations, the reaction of a system to a quantum quench, i.e. a sudden change of external fields or other parameters of the system can be investigated. We give an introduction to a powerful numerical method used in this field of research, the numerical renormalization group method, and apply this method and its recent enhancements to various quantum impurity systems. The main part of this thesis may be structured in the following way: - Ferromagnetic Kondo Model, - Spin-Dynamics in the Anisotropic Kondo and the Spin-Boson Model, - Two Ising-coupled Spins in a Bosonic Bath, - Decoherence in an Aharanov-Bohm Interferometer.

- Interacting ultracold gases in optical lattices: non-equilibrium dynamics and effects of disorder (2012)
- This dissertation aims at giving a theoretical description of various applications of ultracold gases. A particular focus is cast upon the dynamical evolution of bosonic condensates in non-equilibrium by means of the time-dependent Gutzwiller method. Ground state properties of strongly interacting fermionic atoms in box and speckle disordered lattices are investigated via real-space dynamical mean-field theory. ...

- Strongly correlated ultracold gases in disordered optical lattices (2012)
- Seit Anbeginn der Festkörperphysik ist die Frage, warum manche Materialien metallisch sind, andere dagegen isolierend, von zentraler Bedeutung. Eine erste Erklärung wurde durch die Bändertheorie [23, 44] gegeben. Die Elektronen sind dem periodischen Potential der Rumpfatome ausgesetzt, wodurch ein Energiespektrum bestehend aus Bändern erzeugt wird und die Füllung dieser Bänder bestimmt die Leitungseigenschaften des Festkörpers. ...

- Strongly correlated ultracold bosons in an optical lattice (2012)
- In this thesis, we have investigated strongly correlated bosonic gases in an optical lattice, mostly based on a bosonic version of dynamical mean field theory and its real-space extension. Emphasis is put on possible novel quantum phenomena of these many-body systems and their corresponding underlying physics, including quantum magnetism, pair-superfluidity, thermodynamics, many-body cooling, new quantum phases in the presence of long-range interactions, and excitational properties. Our motivation is to simulate manybody phenomena relevant to strongly correlated materials with ultracold lattice gases, which provide an excellent playground for investigating quantum systems with an unprecedented level of precision and controllability. Due to their high controllability, ultracold gases can be regarded as a quantum simulator of many-body systems in solid-state physics, high energy astrophysics, and quantum optics. In this thesis, specifically, we have explored possible novel quantum phases, thermodynamic properties, many-body cooling schemes, and the spectroscopy of strongly correlated many-body quantum systems. The results presented in this thesis provide theoretical benchmarks for exploring quantum magnetism in upcoming experiments, and an important step towards studying quantum phenomena of ultracold gases in the presence of long-range interactions.

- Dynamical effects and disorder in ultracold bosonic matter (2012)
- In this thesis, various aspects on the theoretical description of ultracold bosonic atoms in optical lattices are investigated. After giving a brief introduction to the fundamental concepts of BECs, atomic physics, interatomic interactions and experimental procedures in chapter (1), we derive the Bose-Hubbard model from first principles in chapter (2). In this chapter, we also introduce and discuss a technique to efficiently determine Wannier states, which, in contrast to current techniques, can also be extended to inhomogeneous systems. This technique is later extended to higher dimensional, non-separable lattices in chapter (5). The many-body physics and phases of the Bose-Hubbard is shortly presented in chapter (3) in conjunction with Gutzwiller mean-field theory, and the recently devised projection operator approach. We then return to the derivation of an improved microscopic many-body Hamiltonian, which contains higher band contributions in the presence of interactions in chapter (4). We then move on to many-particle theory. To demonstrate the conceptual relations required in the following chapter, we derive Bogoliubov theory in chapter (5.3.4) in three different ways and discuss the connections. Furthermore, this derivation goes beyond the usual version discussed in most textbooks and papers, as it accounts for the fact, that the quasi-particle Hamiltonian is not diagonalizable in the condensate and the eigenvectors have to be completed by additional vectors to form a basis. This leads to a qualitatively different quasi-particle Hamiltonian and more intricate transformation relations as a result. In the following two chapters (7, 8), we derive an extended quasi-particle theory, which goes beyond Bogoliubov theory and is not restricted to weak interactions or a large condensate fraction. This quasi-particle theory naturally contains additional modes, such as the amplitude mode in the strongly interacting condensate. Bragg spectroscopy, a momentum-resolved spectroscopic technique, is introduced and used for the first experimental detection of the amplitude mode at finite quasi-momentum in chapter (9). The closely related lattice modulation spectroscopy is discussed in chapter (10). The results of a time-dependent simulation agree with experimental data, suggesting that also the amplitude mode, and not the sound mode, was probed in these experiments. In chapter (11) the dynamics of strongly interacting bosons far from equilibrium in inhomogeneous potentials is explored. We introduce a procedure that, in conjunction with the collapse and revival of the condensate, can be used to create exotic condensates, while particularly focusing on the case of a quadratic trapping potential. Finally, in chapter (12), we turn towards the physics of disordered systems derive and discuss in detail the stochastic mean-field theory for the disordered Bose-Hubbard model.

- Repulsiv gebundene Teilchenpaare, aus Bosonen und Fermionen,in einem eindimensionalen, optischen Gitter (2012)
- In dieser Arbeit wurde das Verhalten von repulsiv gebundenen Teilchenpaaren (Dimeren) in eindimensionalen optischen Gittern untersucht. Repulsiv gebundene Teilchenpaare sind metastabile Zustände, die nicht im freien Raum, dafür aber in geordneten Potentialen, wie optische Gitter sie darstellen, vorkommen können. In einem analytischen Teil beschäftigten wir uns mit der Herleitung effektiver Hamiltonians für Dimersysteme. Diese wurden dann unter Verwendung des Time Evolving Block Decimation-Algorithmus (TEBD) numerisch untersucht...